A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spatial and temporal variation of papyrus root mat thickness and water storage in a tropical wetland system. | LitMetric

Spatial and temporal variation of papyrus root mat thickness and water storage in a tropical wetland system.

Sci Total Environ

Department of Geography, Geo-informatics, and Climatic Sciences, Makerere University, P.O.Box 7062, Kampala, Uganda.

Published: November 2018

Papyrus wetlands are predominant in permanently inundated areas of tropical Sub Saharan Africa (SSA) and offer both provisioning and regulatory services. Although a wealth of literature exists on wetland functions, the seasonal behaviour of the papyrus mat and function in water storage has received less attention. The objective of this study was to assess the response of the papyrus root mat to changing water levels in a tropical wetland system in Eastern Uganda. We delineated seven transects through a section of a wetland system and mapped wetland bathymetry along these transects. We used three transects to measure spatial and temporal changes in mat thickness and free water column, and to monitor variations in total depth during two seasons. The free water column increased across all transects in the wet season. However, changes in the mat thickness varied spatially and were influenced by the rate of increase of the free water column as well as wetland bathymetry. The proportion of mat compression was higher at the shallow end of the wetland (83%) compared to the deep end (67%). There was a significant negative correlation between changes in free water column and papyrus mat thickness (r = -0.85, p = 000). Therefore, the mat compresses in response to increase in free water column, which increases the ratio of the free water column to root mat thickness. Hence, the wetland accommodates excess water during rainy seasons. Water depth varied from 1.5 m to 2.1 m during the monitoring period, corresponding to a water storage of 61,597 m and 123,355 m respectively. This means a 50% change in water volume for the studied wetland section. This water regulatory function mitigates severity of floods downstream, but the stored water is also useful to the surrounding communities for wetland-edge farm irrigation during dry seasons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.06.087DOI Listing

Publication Analysis

Top Keywords

free water
24
water column
24
mat thickness
20
water
15
root mat
12
water storage
12
wetland system
12
mat
9
wetland
9
spatial temporal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!