Ambient measurements of PM-bounded polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and oxy-PAHs (OPAHs) were conducted during the summer in Jinan, China, an urban site, and at Tuoji island and Mt. Tai, two background locations. 3.5 h and 11.5 h sampling intervals in daytime and nighttime were utilized to research the diurnal variations of PAHs, NPAHs, and OPAHs. The concentrations of PAHs, NPAHs, and OPAHs were highest at the urban site and lowest at the marine site. The diurnal patterns of PAHs and NPAHs at the urban and marine sites were dissimilar to those observed at the mountain site partly due to the influence of the boundary layer. Vehicle emissions at the urban site made a large contribution to high molecular weight PAHs. 1N-PYR and 7N-BaA during morning and night sampling periods in JN were relatively high. Fossil fuel combustion and biomass burning were the main sources for all three sites during the sampling periods. The air masses at the marine and mountain sites were strongly impacted by photo-degradation, and the air masses at the marine site were the most aged. Secondary formation of NPAHs was mainly initiated by OH radicals at all the three sites and was strongest at the marine site. Secondary formation was most efficient during the daytime at the urban and mountain sites and during morning periods at the marine site. The average excess cancer risk from inhalation (ECR) for 70 years' life span at the urban site was much higher than those calculated for the background sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.06.054 | DOI Listing |
Sci Rep
December 2024
Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Mty), Unidad Monterrey, Alianza Norte 202, Apodaca, N.L., C.P. 66628, Mexico.
This research investigates the concentrations, sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in particulate matter with an aerodynamic diameter of 10 μm or less (PM[Formula: see text]) from critical urban centers in northern Mexico: Metropolitan Monterrey Area (MMA), Chihuahua (CHI), and Ciudad Juárez (CDJ). Advanced gas chromatography-mass spectrometry (GC-MS and GC-NCI-MS) revealed significant PAHs concentrations, with levels in MMA reaching 108.89 ± 99.
View Article and Find Full Text PDFJ Environ Manage
December 2024
MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Serious attention was lacked for various pollutants formed in both gas and tar phase during pyrolysis recycling of waste wind turbine blades (WWTB), especially for components of carcinogenic bisphenol A (BPA) and potentially toxic polycyclic aromatic hydrocarbons (PAHs) in tar. Pyrolysis temperature within 400-600 °C would significantly impact pollutant formations. Additionally, CO had a potential to mitigate pollutants emission as an economic alternative for N.
View Article and Find Full Text PDFEnviron Health (Wash)
March 2024
International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China.
The hazards of polycyclic aromatic hydrocarbons (PAHs) on occupationally exposed population have been widely acknowledged. However, the occupational exposure risks associated their derivatives, methylated PAHs, remain poorly understood. This study conducted a screen of 126 PAHs and 6 oxidative stress biomarkers (OSBs) in paired serum-urine samples from 110 petrochemical workers to assess the risk associated with different PAHs exposure.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
Department of Chemistry, University of Otago, Dunedin 9054, New Zealand.
Nitrogen-containing polycyclic aromatic hydrocarbons (NPAHs) are important molecules for astrochemistry and prebiotic chemistry, as their occurrence spans from interstellar molecular clouds to planetary systems. Their formation has been previously explored in gas phase experiments, but the role of solid-state chemical reactions in their formation under cryogenic conditions remains elusive. Here, we explore the formation of NPAHs through vacuum ultraviolet (VUV) irradiation of pyridine:acetylene ices in amorphous and co-crystalline phases, with the aim to simulate conditions relevant to the interstellar medium and Titan's atmosphere.
View Article and Find Full Text PDFJ Am Chem Soc
October 2024
W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States.
Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) are not only fundamental building blocks in the prebiotic synthesis of vital biomolecules such as amino acids and nucleobases of DNA and RNA but also a potential source of the prominent unidentified 6.2 μm interstellar absorption band. Although NPAHs have been detected in meteorites and are believed to be ubiquitous in the universe, their formation mechanisms in deep space have remained largely elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!