White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians.

Neuroimage

Department of Cognition, Development and Education Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain; Cognition & Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), Feixa Llarga s/n, Pavelló de Govern - Edifici Modular, 08907, L'Hospitalet de Llobregat, Barcelona, Spain; Institució Catalana de recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010, Barcelona, Spain.

Published: November 2018

Music learning has received increasing attention in the last decades due to the variety of functions and brain plasticity effects involved during its practice. Most previous reports interpreted the differences between music experts and laymen as the result of training. However, recent investigations suggest that these differences are due to a combination of genetic predispositions with the effect of music training. Here, we tested the relationship of the dorsal auditory-motor pathway with individual behavioural differences in short-term music learning. We gathered structural neuroimaging data from 44 healthy non-musicians (28 females) before they performed a rhythm- and a melody-learning task during a single behavioural session, and manually dissected the arcuate fasciculus (AF) in both hemispheres. The macro- and microstructural organization of the AF (i.e., volume and FA) predicted the learning rate and learning speed in the musical tasks, but only in the right hemisphere. Specifically, the volume of the right anterior segment predicted the synchronization improvement during the rhythm task, the FA in the right long segment was correlated with the learning rate in the melody task, and the volume and FA of the right whole AF predicted the learning speed during the melody task. This is the first study finding a specific relation between different branches within the AF and rhythmic and melodic materials. Our results support the relevant function of the AF as the structural correlate of both auditory-motor transformations and the feedback-feedforward loop, and suggest a crucial involvement of the anterior segment in error-monitoring processes related to auditory-motor learning. These findings have implications for both the neuroscience of music field and second-language learning investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2018.06.054DOI Listing

Publication Analysis

Top Keywords

learning
9
music learning
8
volume predicted
8
predicted learning
8
learning rate
8
learning speed
8
anterior segment
8
melody task
8
music
5
white-matter structural
4

Similar Publications

Prenatal stress has a well-established link to negative biobehavioral outcomes in young children, particularly for girls, but the specific timing during gestation of these associations remains unknown. In the current study, we examined differential effects of timing of prenatal stress on two infant biobehavioral outcomes [i.e.

View Article and Find Full Text PDF

Models for pure tone audiometry enabling computational evaluation: Introduction to Japanese extensive experiences.

Auris Nasus Larynx

January 2025

Department of Otolaryngology, Faculty of Medicine, Teikyo University, Tokyo, Japan. Electronic address:

Pure tone audiometry including "masking" is the most basic test in audiological medicine. Masking is based on theoretical models of sound perception and propagation and has been widely discussed since the 1950s. In Japan, such discussion has been conducted extensively, starting from early periods up to recent times, with success to enable mathematical simulation, but the achievements have little been disclosed to the English-speaking world.

View Article and Find Full Text PDF

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

Annu Rev Biomed Eng

January 2025

1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!