The interest in using electrospraying as a manufacturing method for amorphous solid dispersions has grown remarkably. However, the impact of formulation and process parameters needs further clarification. In this study, amorphous solid dispersions of darunavir and hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMC AS) and polyvinylpyrrolidone K-30 (PVP) were prepared with electrospraying and spray drying, in order to compare both solvent based manufacturing techniques. Our results revealed that electrospraying was as successful as spray drying. The formulations prepared with the two methods were amorphous and had similar characteristics concerning the residual solvent and drug release. Although differences in the morphology and the particle size distributions were observed, this was not reflected in the pharmaceutical performance of the formulations. Electrosprayed amorphous solid dispersions made up of darunavir and PVP were studied in more detail by means of a full factorial experimental design. The impact of two process and two formulation parameters on the properties of the amorphous solid dispersions was determined. The feed flow rate had a significant effect on the diameter and morphology of the particles whereas the tip-to-collector distance had no significant impact within the tested range. The drug loading influenced the homogeneity and the residual solvent, and the total solids concentration had an impact on the homogeneity and the morphology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2018.06.021 | DOI Listing |
Pharmaceutics
December 2024
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland.
Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.
View Article and Find Full Text PDFMolecules
January 2025
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3 Str., 60-806 Poznan, Poland.
Curcumin, a compound known for its antioxidant and neuroprotective properties, faces challenges due to its low water solubility, which can limit its effectiveness. One effective method to address this issue is through amorphization. Incorporating curcumin into a polymeric matrix to form amorphous solid dispersions is a common approach.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Electronic Convergence Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-Ro, Jinju 52851, Republic of Korea.
Developing thin-film sheets made of oxide-based solid electrolytes is essential for fabricating surface-mounted ultracompact multilayer oxide solid-state batteries. To this end, solid-electrolyte slurry must be optimized for excellent dispersibility. Although oxide-based solid electrolytes for multilayer structures require sintering, high processing temperatures cause problems such as Li-ion volatilization and reactions with graphite anodes.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!