Long term exposure to environmental concentrations of diesel exhaust particles does not impact the phenotype of human bronchial epithelial cells.

Toxicol In Vitro

Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:

Published: October 2018

Chronic exposure to diesel engine exhausts is associated with an increased risk of pulmonary diseases including lung cancer. Diesel engine exhausts contain large amounts of diesel exhaust particles (DEP) on which are adsorbed several carcinogenic compounds such as polycyclic aromatic hydrocarbons. Acute toxicity of high concentrations of DEP has been largely demonstrated in various in vitro cellular models. In contrast, the cellular and molecular impacts of low environmental concentrations of DEP on the phenotype of chronically exposed lung epithelial cells remain to be investigated. In the present study, we show that long term exposure (6 months) to 2 μg/ml (0.4 μg/cm) DEP (standard reference material 1650b) increased cytochrome P4501A mRNA levels in the human bronchial epithelial BEAS-2B cell line. However, chronic exposure to DEP did not change cell morphology, trigger epithelial-mesenchymal transition or increase anchorage-independent cell growth. Moreover, DEP increase neither the levels of reactive oxygen species or those of γ-histone H2AX, nor the expression of interleukin-6 and interleukin-8. Our results thus demonstrate that the chronic exposure to low DEP concentrations could increase cytochrome P501A gene expression in BEAS-2B cells but did not induce molecular effects related to genotoxicity, oxidative stress or inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2018.06.014DOI Listing

Publication Analysis

Top Keywords

chronic exposure
12
long term
8
term exposure
8
environmental concentrations
8
diesel exhaust
8
exhaust particles
8
human bronchial
8
bronchial epithelial
8
epithelial cells
8
diesel engine
8

Similar Publications

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Importance: Cyclophosphamide and calcineurin inhibitors are the most used nonsteroid immunosuppressive medications globally for children with various chronic inflammatory conditions. Their comparative effectiveness remains uncertain, leading to worldwide practice variation. Nephrotic syndrome is the most common kidney disease managed by pediatricians globally and suboptimal treatment is associated with high morbidity.

View Article and Find Full Text PDF

In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.

View Article and Find Full Text PDF

This study investigates the associations between early childhood adversities, stress perception, and fibromyalgia syndrome (FMS). Although the interconnection between dysregulated stress systems and FMS is well documented, the interconnection between early adversities and FMS remains less understood. This study explores the relationship of early-life stress and FMS by examining its mediation through perceived stress, and acute and chronic endocrine stress indicators.

View Article and Find Full Text PDF

The effects of chronically stressing male mice can be transmitted across generations by stress-specific changes in their sperm miRNA content, which induce stress-specific phenotypes in their offspring. However, how each stress paradigm alters the levels of distinct sets of sperm miRNAs is not known. We showed previously that exposure of male mice to chronic social instability (CSI) stress results in elevated anxiety and reduced sociability specifically in their female offspring across multiple generations because it reduces miR-34c levels in sperm of stressed males and their unstressed male offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!