Objective: Deficits in spatial navigation are characteristic and disabling features of typical Alzheimer's disease (tAD) and posterior cortical atrophy (PCA). Visual cues have been proposed to mitigate such deficits; however, there is currently little empirical evidence for their use.

Methods: The effect of visual cues on visually guided navigation was assessed within a simplified real-world setting in individuals with tAD ( = 10), PCA ( = 8), and healthy controls ( = 12). In a repeated-measures design comprising 36 trials, participants walked to a visible target destination (an open door within a built environment), with or without the presence of an obstacle. Contrast and motion-based cues were evaluated; both aimed to facilitate performance by applying perceptual changes to target destinations without carrying explicit information. The primary outcome was completion time; secondary outcomes were measures of fixation position and walking path directness during consecutive task phases, determined using mobile eyetracking and motion capture methods.

Results: Results illustrate marked deficits in patients' navigational ability, with patient groups taking an estimated two to three times longer to reach target destinations than controls and exhibiting tortuous walking paths. There were no significant differences between tAD and PCA task performance. Overall, patients took less time to reach target destinations under cue conditions (contrast-cue: 11.8%; 95% CI: [2.5, 20.3]) and were more likely initially to fixate on targets.

Interpretation: The study evaluated navigation to destinations within a real-world environment. There is evidence that introducing perceptual changes to the environment may improve patients' navigational ability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989777PMC
http://dx.doi.org/10.1002/acn3.566DOI Listing

Publication Analysis

Top Keywords

target destinations
12
alzheimer's disease
8
posterior cortical
8
cortical atrophy
8
visual cues
8
perceptual changes
8
patients' navigational
8
navigational ability
8
reach target
8
navigational cue
4

Similar Publications

Challenges and considerations in liposomal hydrogels for the treatment of infection.

Expert Opin Drug Deliv

January 2025

Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.

Introduction: Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial.

View Article and Find Full Text PDF

Background And Purpose: Cultural and language barriers may affect quality of care, such as adherence to medications. We examined whether adherence to prevention medications within the year after stroke/transient ischemic attack (TIA) differed by region of birth.

Methods: An observational study of adults with stroke/TIA admitted to hospitals in the Australian Stroke Clinical Registry (Queensland, Victoria; 2012-2016; n=45 hospitals), with linked administrative data.

View Article and Find Full Text PDF

A Spatiotemporal Feature-Based Approach for the Detection of Unlicensed Taxis in Urban Areas.

Sensors (Basel)

December 2024

School of Urban Construction and Transportation, Hefei University, Hefei 230601, China.

Unlicensed taxis seriously disrupt the transportation market order, and threaten passenger safety. Therefore, this paper proposes a method for identifying unlicensed taxis based on travel characteristics. First, the vehicle mileage and operation time are calculated using traffic surveillance bayonet data, and variance analysis is applied to identification indicators for unlicensed taxis.

View Article and Find Full Text PDF

Adipose Tissue as a Major Launch Spot for Circulating Extracellular Vesicle-Carried MicroRNAs Coordinating Tissue and Systemic Metabolism.

Int J Mol Sci

December 2024

Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain.

Circulating microRNAs (miRNAs), especially transported by extracellular vesicles (EVs), have recently emerged as major new participants in interorgan communication, playing an important role in the metabolic coordination of our tissues. Among these, adipose tissue displays an extraordinary ability to secrete a vast list of EV-carried miRNAs into the circulation, representing new hormone-like factors. Despite the limitations of current methodologies for the unequivocal identification of the origin and destination of EV-carried miRNAs in vivo, recent investigations clearly support the important regulatory role of adipose-derived circulating miRNAs in shaping the metabolism and function of other tissues including the liver, muscle, endocrine pancreas, cardiovascular system, gastrointestinal tract, and brain.

View Article and Find Full Text PDF

How a single, naive T cell can give rise to diverse progenies of effector and memory cells is not completely understood. One way to achieve this is by asymmetric cell division (ACD), characterized by an unequal distribution of cellular cargo, resulting in divergent daughter cells already after the first division-one being more destined to an effector and the other more to a memory fate. Here, we established two methods to analyze the relative distribution of the older "mother" centrosome and the younger "daughter" centrosome during the first cell division of activated CD8 T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!