Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bacterial and protozoan sugar chains contain glycosyl 1-phosphate repeating structures; these repeating structures have been studied for vaccine development. The fluorinated analogues of [β-Gal-(1→4)-α-Man-(1→6)-P-] , which are glycosyl 1-phosphate repeating structures found in , were synthesised using the solid-phase phosphoramidite method. This method has been less extensively studied for the synthesis of glycosyl 1-phosphate units than -phosphonate chemistry. A stepwise synthesis of a compound containing five such repeating units has been conducted using the phosphoramidite method herein, which is the longest glycosyl 1-phosphate structures to be chemically constructed in a stepwise manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987806 | PMC |
http://dx.doi.org/10.1002/open.201800030 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!