Previously, a number of microRNAs (miRs) have been identified to participate in the development and progression of glioma via the regulation of their target genes. However, the molecular mechanisms underlying the effect of miR-423-3p in glioma growth remain unclear. In the present study, the reverse transcription-quantitative polymerase chain reaction and western blotting were used to assess the mRNA and protein expression levels of miR-423-3p, respectively. An MTT assay and flow cytometry were performed to determine cell proliferation and apoptosis, respectively. A luciferase reporter gene assay was performed to determine the target association between pannexin 2 (PANX2) and miR-423-3p. It was revealed that miR-423-3p was significantly upregulated in glioma tissues compared with normal brain tissues, and the increased expression of miR-423-3p was significantly associated with an advanced grade as well as a poorer prognosis of patients with glioma. Inhibition of miR-423-3p using an miR-423-3p inhibitor resulted in the decreased proliferation of glioma U251 and U87MG Uppsala cells, and the induction of apoptosis. PANX2 was identified as a novel target gene of miR-423-3p, and the expression of PANX2 was revealed to be increased in U251 and U87MG Uppsala cells when miR-423-3p was inhibited. Knockdown of PANX2 attenuated the effects of miR-423-3p inhibition on glioma cell proliferation and apoptosis. Furthermore, PANX2 was significantly downregulated in glioma tissues compared with normal brain tissues, and its levels were markedly lower in World Health Organization (WHO) stage III-IV gliomas compared with WHO stage I-II gliomas. Additionally, the expression levels of PANX2 were identified to be inversely correlated with miR-423-3p expression levels in glioma tissues. Consequently, targeting miR-423-3p may inhibit glioma growth via the upregulation of PANX2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006452 | PMC |
http://dx.doi.org/10.3892/ol.2018.8636 | DOI Listing |
Nat Prod Res
January 2025
Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
Gliomas are tumours that affect the nervous system, with glioblastoma, also known as grade IV astrocytoma, being the most aggressive type, associated with poor prognosis. Glioblastoma is characterised by its highly invasive nature, rapid growth, and resistance to conventional chemotherapy and radiation treatments, resulting in a median survival of about 14 months. To improve patient outcomes, novel therapeutic approaches are needed.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
The optimal therapeutic intervention for pediatrics with optic pathway glioma (OPG) remained controversial in the literature. Recently, due to substantial adverse events (AEs) of chemotherapy and its impact on children's lives, the efficacy of other options has been investigated. Bevacizumab (BVZ) is an anti-vascular endothelial growth factor (VEGF) agent that alters the lesion microenvironment.
View Article and Find Full Text PDFSci Rep
January 2025
Neurology Unit, Department of Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
Astrocytoma is a common type of glioma and a frequent cause of brain tumour-related epilepsy. Although the link between glioma and epilepsy is well established, the precise mechanisms underlying epileptogenesis in astrocytoma remain poorly understood. In this study, we performed proteomic analysis of astrocytoma tissue from patients with and without seizures using mass spectrometry-based techniques.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address:
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China.
Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.
Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!