Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca-Calmodulin and PKA.

Front Mol Neurosci

Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.

Published: June 2018

We elucidated the mechanisms underlying the kainate receptor (KAR)-mediated facilitatory modulation of synaptic transmission in the cerebellum. In cerebellar slices, KA (3 μM) increased the amplitude of evoked excitatory postsynaptic currents (eEPSCs) at synapses between axon terminals of parallel fibers (PF) and Purkinje neurons. KA-mediated facilitation was antagonized by NBQX under condition where AMPA receptors were previously antagonized. Inhibition of protein kinase A (PKA) suppressed the effect of KA on glutamate release, which was also obviated by the prior stimulation of adenylyl cyclase (AC). KAR-mediated facilitation of synaptic transmission was prevented by blocking Ca permeant KARs using philanthotoxin. Furthermore, depletion of intracellular Ca stores by thapsigargin, or inhibition of Ca-induced Ca-release by ryanodine, abrogated the synaptic facilitation by KA. Thus, the KA-mediated modulation was conditional on extracellular Ca entry through Ca-permeable KARs, as well as and mobilization of Ca from intracellular stores. Finally, KAR-mediated facilitation was sensitive to calmodulin inhibitors, W-7 and calmidazolium, indicating that the increased cytosolic [Ca] sustaining KAR-mediated facilitation of synaptic transmission operates through a downstream Ca/calmodulin coupling. We conclude that, at cerebellar parallel fiber-Purkinje cell synapses, presynaptic KARs mediate glutamate release facilitation, and thereby enhance synaptic transmission through Ca-calmodulin dependent activation of adenylyl cyclase/cAMP/protein kinase A signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997777PMC
http://dx.doi.org/10.3389/fnmol.2018.00195DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
16
glutamate release
12
kar-mediated facilitation
12
facilitation synaptic
8
intracellular stores
8
facilitation
7
synaptic
5
cerebellar kainate
4
kainate receptor-mediated
4
receptor-mediated facilitation
4

Similar Publications

Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory.

View Article and Find Full Text PDF

Alterations to the excitation/inhibition (E/I) ratio are postulated to underlie behavioral phenotypes in autism spectrum disorder (ASD) patients and mouse models. However, in wild type mice the E/I ratio is not constant, but instead oscillates across the 24-h day. Therefore, we tested whether E/I regulation, rather than the overall E/I ratio, is disrupted in two ASD-related mouse lines: KO and BTBR, models of syndromic and idiopathic ASD, respectively.

View Article and Find Full Text PDF

Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.

View Article and Find Full Text PDF

Astrocytoma is a common type of glioma and a frequent cause of brain tumour-related epilepsy. Although the link between glioma and epilepsy is well established, the precise mechanisms underlying epileptogenesis in astrocytoma remain poorly understood. In this study, we performed proteomic analysis of astrocytoma tissue from patients with and without seizures using mass spectrometry-based techniques.

View Article and Find Full Text PDF

Tuning synapse strength by nanocolumn plasticity.

Trends Neurosci

January 2025

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China. Electronic address:

The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!