Keutel syndrome is caused by mutations in the matrix gamma-carboxyglutamic acid () gene (OMIM 154870) and is inherited in an autosomal recessive fashion. It is characterized by brachydactyly, pulmonary artery stenosis, a distinctive facial phenotype, and cartilage calcification. To date, only 36 cases have been reported worldwide. We describe clinical and molecular findings of the first Brazilian patient with Keutel syndrome. Keutel syndrome was suspected based on clinical and morphological evaluation, so we sequenced the gene using the TruSight One Sequencing Panel (Illumina). The obtained gene sequence was then validated by Sanger sequencing. We identified a novel pathogenic homozygous variant of the gene (c.2T>C; p.Met1Thr) confirming Keutel syndrome. Proper diagnosis of this syndrome is important for clinical management and is an indication for genetic counseling. Keutel syndrome should be suspected in patients with cartilage calcifications and brachydactyly when associated with a distinctive facial phenotype and pulmonary artery stenosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006623PMC
http://dx.doi.org/10.1159/000488573DOI Listing

Publication Analysis

Top Keywords

keutel syndrome
24
brazilian patient
8
patient keutel
8
pulmonary artery
8
artery stenosis
8
distinctive facial
8
facial phenotype
8
syndrome suspected
8
syndrome
7
keutel
6

Similar Publications

Matrix Gla protein (MGP) is a vitamin K-dependent γ-carboxylated protein that was initially identified as a physiological inhibitor of ectopic calcification, primarily affecting cartilage and the vascular system. Mutations in the gene were found to be responsible for the Keutel syndrome, a condition characterized by abnormal calcifications in the cartilage, lungs, brain, and vascular system. has been shown to be dysregulated in several tumors, including cervical, ovarian, urogenital, and breast cancers.

View Article and Find Full Text PDF

An inducible model for medial calcification based on matrix Gla protein deficiency.

J Struct Biol

December 2024

Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children, Montreal, Quebec, Canada; Department of Medicine, McGill University, Quebec, Canada. Electronic address:

Calcific deposits in the arterial media have been associated with a number of metabolic and genetic disorders including diabetes, chronic kidney disease and generalized arterial calcification of infancy. The loss of matrix Gla protein (MGP) leads to medial elastic lamina calcification (elastocalcinosis) in both humans and animal models. While MGP-deficient (Mgp) mice have been used as a reliable model to study medial elastocalcinosis, these mice are difficult to maintain because of their fragility.

View Article and Find Full Text PDF

Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss-of-function variants in the MGP gene cause Keutel syndrome, an autosomal recessive disorder characterized by widespread calcification of various cartilaginous tissues and skeletal and vascular anomalies.

View Article and Find Full Text PDF

Assessment of MGP gene expression in cancer and contribution to prognosis.

Biochimie

November 2023

Centre of Marine Sciences (CCMAR), University of Algarve, Faro, 8005-139, Portugal; Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal; Algarve Biomedical Center, University of Algarve, Faro, 8005-139, Portugal. Electronic address:

Matrix Gla protein (MGP) was first identified as a calcification physiological inhibitor and the causal agent of the Keutel syndrome. MGP has been suggested to play a role in development, cell differentiation, and tumorigenesis. This study aimed to compare MGP expression and methylation status in different tumors and adjacent tissues, using The Cancer Genome Atlas (TCGA) data repository.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!