A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of stagnation and sampling volume on water microbial quality monitoring in large buildings. | LitMetric

Impact of stagnation and sampling volume on water microbial quality monitoring in large buildings.

PLoS One

Department of Civil Engineering, Polytechnique Montréal, Montréal, QC, Canada.

Published: April 2019

Microbial drinking water quality can be altered in large buildings, especially after stagnation. In this study, bacterial profiles were generated according to the stagnation time and the volume of water collected at the tap. Successive volumes of cold and hot water were sampled after controlled stagnation periods. Bacterial profiles revealed an important decline (> 2 log) in culturable cells in the first 500 mL sampled from the hot and cold water systems, with a steep decline in the first 15 mL. The strong exponential correlation (R2 ≥ 0.97) between the culturable cell counts in water and the pipe surface-to-volume ratio suggests the biofilm as the main contributor to the rapid increase in suspended culturable cells measured after a short stagnation of one-hour. Results evidence the contribution of the high surface-to-volume ratio at the point of use and the impact of short stagnation times on the increased bacterial load observed. Simple faucets with minimal internal surface area should be preferred to minimize surface area. Sampling protocol, including sampling volume and prior stagnation, was also shown to impact the resulting culturable cell concentration by more than 1000-fold. Sampling a smaller volume on first draw after stagnation will help maximize recovery of bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013212PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199429PLOS

Publication Analysis

Top Keywords

sampling volume
8
volume water
8
large buildings
8
bacterial profiles
8
culturable cells
8
culturable cell
8
surface-to-volume ratio
8
short stagnation
8
surface area
8
stagnation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!