Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Despite the common use of non-fasting measurements for lipid profile in children it remains unclear as to the extent non-fasting conditions have on laboratory results of lipids measurements. We aimed to assess the impact of non-fasting lipid profile on the occurrence of dyslipidemia in children.
Materials And Methods: Basic lipid profile including: total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), as well as small, dense-LDL-C (sd-LDL-C), apolipoprotein AI (ApoAI), apolipoprotein B (ApoB) and lipoprotein(a) [Lp(a)], were measured in 289 presumably healthy children aged 9-11 in both fasting and non-fasting condition. The clinical impact of non-fasting lipid profile was evaluated individually for each child with estimation of false positive (FP) and false negative (FN) results.
Results: The highest percentage of FP results in non-fasting condition was observed for TG (42.3%) being significantly higher when compared to FN results (p = 0.003). In contrast, the highest percentage of FN results in a non-fasting state were shown for LDL-C (14.3%), but the difference was statistically insignificant when compared to FP results. When comparing fasting and non-fasting lipid profile a number of significant differences was shown for: TG (p<0.001), HDL-C (p = 0.002) LDL-C (p<0.001) and ApoAI (p<0.001), respectively. The occurrence of dyslipidemia, recognized on the basis of non-fasting lipids was significantly higher (p = 0.010) when compared to fasting lipid profile.
Conclusions: A higher occurrence of dyslipidemia, based on the measurement of non-fasting lipids in children, is suggestive of possible disorders in lipid metabolism. However, accurate identification of dyslipidemia by assessment of non-fasting lipids requires the establishment of appropriate cut-off values for children.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013146 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198433 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!