Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coastal sediments are an important site for transient and long-term mercury (Hg) storage, and they foster a geochemical environment optimal for Hg methylation. Therefore, efforts have been taken to constrain the role of sediments as a source of methylmercury (MeHg) to the estuarine water column. This study employed the Gust Microcosm Erosion Core system capable of quantifying particle removal from undisturbed cores under measurable shear stress conditions to assess particulate Hg and MeHg exchange between sediments and the water column. Samples were collected from organic-rich and organic-poor sediment types from the mid- and lower Delaware Bay. It was found that bulk sediment samples from organic-rich systems overpredict total Hg and MeHg release to the water column, whereas organic-poor sediments underpredict the exchange. In general, organic-rich sediments in shallow environments have the most impact on surface particle dynamics. There is little evidence to suggest that MeHg formed in the sediments is released to the water column via particulate exchange, and therefore, nonsedimentary sources likely control MeHg levels in this estuarine water column.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051696 | PMC |
http://dx.doi.org/10.1021/acs.est.8b01920 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!