Infrared extinction and microwave absorption properties of hybrid FeO@SiO@Ag nanospheres synthesized via a facile seed-mediated growth route.

Nanotechnology

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

Published: September 2018

FeO@SiO@Ag ternary hybrid nanoparticles were synthesized via a facile seed-mediated growth route. X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer measurements were used to characterize the as-prepared product. The results indicated that the nanoparticles exhibited excellent magnetic properties and an extremely dense structure with Ag layer thicknesses of 30, 40, and 50 nm. Furthermore, the microwave shielding effectiveness exceeded 20 dB over almost the entire frequency range (2-18 GHz), and the effectiveness obviously improved as the thickness of the Ag layer increased. In addition, the IR extinction coefficient of the nanoparticles was calculated by a finite-difference time-domain method, which showed that the nanoparticles can inherit the extinction performance of pure silver when the Ag shell thickness was 30 nm. Specifically, after assembling into chains, the peak position of the IR extinction curves displayed a significant redshift and an intensity increase as the number of nanoparticles increased in the chain, which dramatically promoted the IR extinction capability. As a result, the FeO@SiO@Ag nanoparticles are expected to be used as a new multispectral interference material.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aace23DOI Listing

Publication Analysis

Top Keywords

synthesized facile
8
facile seed-mediated
8
seed-mediated growth
8
growth route
8
nanoparticles
6
infrared extinction
4
extinction microwave
4
microwave absorption
4
absorption properties
4
properties hybrid
4

Similar Publications

In recent years, Imidazothiazole-Chalcone conjugates have emerged as notable pharmacophores with potential applications in discovering biologically active compounds. This study focuses on synthesizing novel imidazo[2,1-b]thiazole chalcone derivatives through a facile and conventional process adhering to several principles of green chemistry, facilitating scalable production. The synthesized compounds underwent comprehensive spectroscopic analysis, including 1H NMR, 13C NMR, LC-MS, and FT-IR techniques.

View Article and Find Full Text PDF

Solvothermally optimizing AgTe/AgS composites with high thermoelectric performance and plasticity.

Mater Horiz

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

Silver-based fast ionic conductors show promising potential in thermoelectric applications. Among these, AgS offers unique high plasticity but low electrical conductivity, whereas AgTe exhibits high intrinsic electrical conductivity yet faces limitations due to high thermal conductivity and poor plasticity. Developing a composite thermoelectric material that combines the benefits of both is therefore essential.

View Article and Find Full Text PDF

Selective Removal of Highly Toxic Selenite by a Biobased Zirconium-Polyphenolic Supramolecular Gel.

Inorg Chem

January 2025

State Key Laboratory of Tea Biology and Utilization, Agricultural Photocatalysis Laboratory, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.

The green and facile biobased functional materials have attracted great attention due to the promising potential to deal with the water pollution of toxic selenium ions that act as a serious threat to human health and the ecological environment. The development of cheap and eco-friendly approaches to remove SeO is of great significance for the safety of drinking water. However, there are some disadvantages in most of the employed methods, such as poor removal capability, high cost, and unsustainability.

View Article and Find Full Text PDF

Significantly Enhanced Acidic Oxygen Evolution Reaction Performance of RuO Nanoparticles by Introducing Oxygen Vacancy with Polytetrafluoroethylene.

Polymers (Basel)

December 2024

Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

The supported RuO catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process.

View Article and Find Full Text PDF

Catheter-associated urinary tract infection (CAUTI) induced by rapid bacterial colonization and biofilm formation on urinary catheters is a key issue that urgently needs to be addressed. To prevent CAUTI, many contact-killing, non-leaching coatings have been developed for the surfaces of silicone catheters. However, due to the chemical inertness of the silicone substrate, most current coatings lack adhesion and are unstable under external forces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!