Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., , L., as well as neglected species, like the fibre-producing plant L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027220PMC
http://dx.doi.org/10.3390/genes9060309DOI Listing

Publication Analysis

Top Keywords

plant secondary
20
secondary metabolites
20
production plant
8
phenolic compounds
8
will surveyed
8
secondary
6
plant
6
production
5
metabolites
5
metabolites examples
4

Similar Publications

Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.

View Article and Find Full Text PDF

As an efficient gene editing tool, the CRISPR/Cas9 system has been widely employed to investigate and regulate the biosynthetic pathways of active ingredients in medicinal plants. CRISPR technology holds significant potential for enhancing both the yield and quality of active ingredients in medicinal plants. By precisely regulating the expression of key enzymes and transcription factors, CRISPR technology not only deepens our understanding of secondary metabolic pathways in medicinal plants but also opens new avenues for drug development and the modernization of traditional Chinese medicine.

View Article and Find Full Text PDF

Pyrrocidines A and B demonstrate synergistic inhibition of growth.

Front Microbiol

January 2025

Toxicology and Mycotoxin Research Unit, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States.

-a mycotoxigenic fungus and food safety threat-coinhabits maize kernels with . This protective endophyte produces secondary metabolites of interest, pyrrocidines A and B, which inhibit the growth of and specifically block fumonisin biosynthesis. Previous transcriptomic analyses found (FVEG_00314), a gene adjacent to the fumonisin biosynthetic gene cluster, to be induced over 4,000-fold in response to pyrrocidine challenge.

View Article and Find Full Text PDF

A significant global health crisis is predicted to emerge due to antimicrobial resistance by 2050, with an estimated 10 million deaths annually. Increasing antibiotic resistance necessitates continuous therapeutic innovation as conventional antibiotic treatments become increasingly ineffective. The naturally occurring antibacterial, antifungal, and antiviral compounds offer a viable alternative to synthetic antibiotics.

View Article and Find Full Text PDF

Elucidating the degradation mechanism of beef myofibrillar proteins under hydroxyl radical oxidation through the lens of cysteine oxidation modifications.

Food Chem X

January 2025

Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.

The study aimed to assess the oxidative modification behavior of bovine myofibrillar proteins (MPs) cysteines (Cys) by hydroxyl radical (·OH) through the construction of an in vitr Fenton reaction system. The ·OH generated by the Fenton reaction induced large-scale oxidative modification of Cys, and redox proteomics identified a total of 1192 differential oxidation sites (Dos), 59 Dos were located in the MPs structure. The Cys of actin (17 Dos), myosin/myomesin (16 Dos), tenascin (12 Dos) and sarcomere (10 Dos) in the MPs structure showed active oxidative modification behavior towards ·OH, especially with the "-C-X-X-X-X-W-" structure amino acid sequence showed high sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!