Parallel Evolution of Host-Attachment Proteins in Phage PP01 Populations Adapting to O157:H7.

Pharmaceuticals (Basel)

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.

Published: June 2018

The emergence of antibiotic resistance has sparked interest in phage therapy, which uses virulent phages as antibacterial agents. Bacteriophage PP01 has been studied for potential bio-control of O157:H7, its natural host, but in the laboratory, PP01 can be inefficient at killing this bacterium. Thus, the goal of this study was to improve the therapeutic potential of PP01 through short-term experimental evolution. Four replicate populations of PP01 were serially passaged 21 times on non-evolving O157:H7 with the prediction that the evolved phage populations would adsorb faster and more efficiently kill the host bacteria. Dead-cell adsorption assays and in vitro killing assays confirmed that evolved viruses improved their adsorption ability on O157:H7, and adapted to kill host bacteria faster than the wildtype ancestor. Sequencing of candidate tail-fiber genes revealed that the phage populations evolved in parallel; the lineages shared two point mutations in that encodes a host recognition protein, and surprisingly shared a ~600 bp deletion in that encodes the distal tail fibers. In contrast, no mutations were observed in the gene encoding PP01’s short tail fibers. We discuss the functional role of the observed mutations, including the possible adaptive role of the evolved deletions. This study demonstrates how experimental evolution can be used to select for viral traits that improve phage attack of an important bacterial pathogen, and that the molecular targets of selection include loci contributing to cell attachment and phage virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027323PMC
http://dx.doi.org/10.3390/ph11020060DOI Listing

Publication Analysis

Top Keywords

experimental evolution
8
phage populations
8
kill host
8
host bacteria
8
tail fibers
8
phage
6
pp01
5
parallel evolution
4
evolution host-attachment
4
host-attachment proteins
4

Similar Publications

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.

View Article and Find Full Text PDF

Background: Friedreich ataxia is a rare neurodegenerative disorder caused by frataxin deficiency. Both underweight and overweight occur in mitochondrial disorders, each with adverse health outcomes. We investigated the longitudinal evolution of anthropometric abnormalities in Friedreich ataxia and the hypothesis that both weight loss and weight gain are associated with faster disease progression.

View Article and Find Full Text PDF

Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.

View Article and Find Full Text PDF

Sleep is a universally conserved behavior whose origin and evolutionary purpose are uncertain. Using phylogenomics, this article investigates the evolutionary foundations of sleep from a never before used perspective. More specifically, it identifies orthologs of human sleep-related genes in the Lokiarchaeota of the Asgard superphylum and examines their functional role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!