Background: Cardiac repolarization abnormalities in drug-induced and genetic long-QT syndrome may lead to afterdepolarizations and life-threatening ventricular arrhythmias. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) should help to overcome the limitations of animal models based on species differences in repolarization reserve. Here, we compared head-to-head the contribution of (long QT1) and (long QT2) on action potentials (APs) in human left ventricular (LV) tissue and hiPSC-CM-derived engineered heart tissue (EHT).
Methods: APs were measured with sharp microelectrodes in EHT from 3 different control hiPSC-CM lines and in tissue preparations from failing LV.
Results: EHT from hiPSC-CMs showed spontaneous diastolic depolarization and AP generation that were sensitive to low concentrations of ivabradine. block by E-4031 prolonged AP duration at 90% repolarization with similar half-effective concentration in EHT and LV but larger effect size in EHT (+281 versus +110 ms in LV). Although block alone evoked early afterdepolarizations and triggered activity in 50% of EHTs, slow pacing, reduced extracellular K, and blocking of , , and were necessary to induce early afterdepolarizations in LV. In accordance with their clinical safety, moxifloxacin and verapamil did not induce early afterdepolarizations in EHT. In both EHT and LV, block by HMR-1556 prolonged AP duration at 90% repolarization slightly in the combined presence of E-4031 and isoprenaline.
Conclusions: EHT from hiPSC-CMs shows a lower repolarization reserve than human LV working myocardium and could thereby serve as a sensitive and specific human-based model for repolarization studies and arrhythmia, similar to Purkinje fibers. In both human LV and EHT, only contributed to repolarization under adrenergic stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCEP.117.006035 | DOI Listing |
Comput Methods Programs Biomed
January 2025
Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan. Electronic address:
Background And Objective: It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood.
Methods: Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA.
Chaos
January 2025
Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil.
The presence of chaos is ubiquitous in mathematical models of neuroscience. In experimental neural systems, chaos was convincingly demonstrated in membranes, neurons, and small networks. However, its effects on the brain have long been debated.
View Article and Find Full Text PDFChaos
December 2024
Departamento de Matemática Aplicada and IUMA, Computational Dynamics Group, Universidad de Zaragoza, Zaragoza E-50009, Spain.
Curr Issues Mol Biol
November 2024
School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca release (SOICR), and (d) loss of function.
View Article and Find Full Text PDFJ Physiol
December 2024
Physics Department and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, MA, USA.
Ca waves are known to trigger delayed after-depolarizations that can cause malignant cardiac arrhythmias. However, modelling Ca waves using physiologically realistic models has remained a major challenge. Existing models with low Ca sensitivity of ryanodine receptors (RyRs) necessitate large release currents, leading to an unrealistically large Ca transient amplitude incompatible with the experimental observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!