Approach to the Mechanism of Hydrogen Evolution Electrocatalyzed by a Model Co Clathrochelate: A Theoretical Study by Density Functional Theory.

Chemphyschem

Équipe de Recherche et d'Innovation en Électrochimie pour L'Énergie (ERIEE) Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) (UMR CNRS 8182), Université Paris-Saclay, Paris-Sud, 91405, Orsay, France.

Published: October 2018

The hydrogen evolution reaction (HER) has attracted much attention within the scientific community because of increasing demands of modern society for clean and renewable energy sources. Molecular complexes of 3d-transition metals, such as cobalt, hold potential to replace platinum for the HER in acidic media. Among these, cage complexes such as tris-glyoximate metal clathrochelates, have demonstrated promising catalytic properties towards the HER. However, it is not clear whether the catalytic activity of this molecule stems from metal-centered activation of H , due to a low oxidation state of the metal stabilized by the surrounding organic cage, or if it is the organic cage playing a further cooperative role in bringing protons together. Herein, we report on a density functional theory study of two possible mechanisms for the HER catalyzed by a model Co clathrochelate. To assess the putative ligand involvement in the mechanism, several combinations of single and double protonation sites were investigated. The structural and energetic analysis of relevant intermediates suggests that the electrocatalytic mechanism is not based on the cooperation between the ligand and the metal. Instead, it is mainly due to the activation of H by the Co metallocenter. Our calculations further suggest that the last step in the mechanism is a proton coupled electron transfer step.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201800383DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
8
model clathrochelate
8
density functional
8
functional theory
8
organic cage
8
approach mechanism
4
mechanism hydrogen
4
evolution electrocatalyzed
4
electrocatalyzed model
4
clathrochelate theoretical
4

Similar Publications

Alkaline Hydrogen Evolution Reaction Electrocatalysts for Anion Exchange Membrane Water Electrolyzers: Progress and Perspective.

JACS Au

December 2024

Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, 201804, Shanghai, China.

For the aim of achieving the carbon-free energy scenario, green hydrogen (H) with non-CO emission and high energy density is regarded as a potential alternative to traditional fossil fuels. Over the last decades, significant breakthroughs have been realized on the alkaline hydrogen evolution reaction (HER), which is a fundamental advancement and efficient process to generate high-purity H in the laboratory. Based on this, the development of the practical industry-oriented anion exchange membrane water electrolyzer (AEMWE) is on the rise, showing competitiveness with the incumbent megawatt-scale H production technologies.

View Article and Find Full Text PDF

Ru single atoms and nanoparticles immobilized on hierarchically porous carbon for robust dual-pH hydrogen evolution.

J Colloid Interface Sci

December 2024

School of Mechanical Engineering, Qinghai University, Xining 810016, PR China. Electronic address:

Ensuring Ruthenium-based (Ru) catalysts with high metal utilization is a potential and challenging strategy for designing and constructing high catalytic activity electrocatalysts for hydrogen evolution reaction (HER). Herein, Ruthenium single atoms (SA) and Ruthenium nanoparticles (NPs) are simultaneously anchored on hierarchically porous carbon via the self-templates method for the first time. Benefiting from the synergetic effect of hierarchically porous carbon and the coexistence of Ru SA and Ru NPs, the Ru/C-800 shows attractive HER catalytic activity in acidic and alkaline solutions, with low overpotentials to drive the current density of 10 mA cm and the smallest Tafel slope.

View Article and Find Full Text PDF

Novel organic additives with high dipole moments: Improving the anode interface structure to enhance the performance of zinc ion aqueous batteries.

J Colloid Interface Sci

December 2024

Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, PR China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, PR China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China. Electronic address:

The reversibility and stability of aqueous zinc-ion batteries (AZIBs) are largely limited by free-water-induced side reactions (e.g., hydrogen evolution and zinc corrosion) and negative zinc dendrite growth.

View Article and Find Full Text PDF

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Development of efficient and stable bifunctional transition metal phosphide catalysts is critical for advancing hydrogen production technologies. Herein, RuCo co-doped NiP (RuCoNiP) was designed and synthesized by one-step electrodeposition for Ni electronic structure modulation, and evolved to RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) heterointerfaces by self-assembled reconstruction during HER and OER processes, respectively. RuCoNiP@α-Ni(OH) enhances HER activity (305.

View Article and Find Full Text PDF

Anion modulation enhances the internal electric field of CuCoO to improve the catalysis in ammonia borane hydrolysis.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China. Electronic address:

Ammonia borane (NHBH, AB) is considered a promising chemical hydrogen storage material. The development of efficient, stable, and economical catalysts for AB hydrolysis is essential for realizing the hydrogen energy economy. In this study, a series of p-p heterojunction catalysts, labeled M (P/S/Cl)-CuCoO, were fabricated using the high-temperature vapor phase method to achieve anionic interface gradient doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!