In this study, the Geographic Information System for Global Medicinal Plants(GMPGIS) was used to assess the global production and ecological adaptation of Panax notoginseng. Based on climate factors and soil types of P. notoginseng from 326 sampling sites, which cover both traditional and current major producing regions, as well as on the results of the ecological similarity computing analysis, we obtained the maximum ecological similarity areas for P. notoginseng worldwide. The results indicated that China was the most suitable ecological and cultivated area globally for P. notoginseng, accounting for more than 70% of the total cultivated area in the world. The United States, Brazil, Portugal, and other 22 countries also had a small amount of potential suitable producing area. China has eight potential suitable producing provinces, including Yunnan, Fujian, Guangxi, Guizhou, etc. The prediction is consistent with the new district of P. notoginseng reported in recent years, which verifies the accuracy of the prediction of GMPGIS. We conducted a literature analysis on resource regeneration and quality ecology on P. notoginseng, and summarized the cultivation, wild tending models, and effects of environmental factors on the quality of P. notoginseng. The results provide scientific basis for selection of P. notoginseng, as well as the introduction, cultivation, and production of P. notoginseng worldwide.
Download full-text PDF |
Source |
---|
Front Microbiol
December 2024
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
Introduction: Functional rhizosphere microbiomes (FRM) are critical for plant health and yield. However, the ecological succession of FRM and their links to plant genetic factors across the life cycle of perennial plants remain poorly understood.
Methods: This study profiled FRM, including plant-beneficial bacteria (PBB) and fungal plant pathogens (FPP), across different developmental stages of .
Int J Biol Macromol
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China. Electronic address:
There are abundant glycosylated substances such as cellulose, hemicellulose, and phytochemical glycosides in plants, which could be converted into functional chemicals such as monosaccharides, oligosaccharides, and bioactive aglycones by cleavage of glycosidic bonds using glycoside hydrolases (GHs). Among those GHs, β-glucosidase and β-xylosidase are the rate-limiting enzymes for degrading cellulose and hemicellulose, respectively, and can convert a variety of glycosylated substances. These two enzymes play important roles in the high value use of plant resources and have great potential applications.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
saponins (PNS), the primary active components of (Burk.) F.H.
View Article and Find Full Text PDFCurr Microbiol
December 2024
College of Agriculture and Life Sciences, Kunming University, 2 Pu Xin Road, Kunming, 650214, Yunnan, China.
β-Glucosidase plays a pivotal role in transforming ginsenosides into specific minor ginsenosides. In this study, total ginsenosides from Panax notoginseng leaves were used as substrates to stimulate the growth of Aspergillus niger NG1306. Transcriptome analysis identified a β-glucosidase gene, Anglu04478 (1455 bp, 484 amino acids, 54.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Department of Cardiology, Guang Anmen Hospital, Beijing, People's Republic of China.
Background: Improving angiogenesis in the ischemic myocardium is a therapeutic strategy for preventing, reducing, and repairing myocardial injury of coronary artery disease (CAD). saponins (PNS) have been widely used in the clinical treatment of cardiovascular diseases, demonstrating excellent efficacy, and can potentially improve angiogenesis in the ischemic myocardium. However, the effects of PNS on angiogenesis and its underlying mechanism of action remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!