Periodic mesoporous organosilica (PMO) thin films were synthesized by evaporation-induced self-assembly of 1,2-bis(triethoxysilyl)ethane and an ionic Gemini 16-12-16 surfactant under acidic conditions. The films were characterized by Fourier-transform infrared spectroscopy, grazing-incidence small-angle X-ray scattering, ellipsometric porosimetry, impedance measurements, and nanoindentation. The ease of control of the packing parameter in Gemini surfactants makes the PMO film templated by a Gemini an exciting first step towards small pore size PMO films with engineered mesostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201800341DOI Listing

Publication Analysis

Top Keywords

periodic mesoporous
8
mesoporous organosilica
8
gemini surfactants
8
tuning properties
4
properties periodic
4
films
4
organosilica films
4
films low-k
4
low-k application
4
gemini
4

Similar Publications

Preserving fertility is important in men under radiation therapy because healthy cells are also affected by radiation. Supplementation with antioxidants is a controversial issue in this process. Designing a biocompatible delivery system containing hydrophobic antioxidants to release control may solve these disagreements.

View Article and Find Full Text PDF

Intelligent antibacterial coatings based on sensitive response and periodic fast drug release for long-term defense against corrosion induced by sulfate-reducing bacteria.

J Colloid Interface Sci

January 2025

Department of Materials Science and Engineering, Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048 PR China.

Pitting corrosion caused by sulfate-reducing bacteria (SRB) significantly shortens the lifespan of metallic pipelines. Antibacterial coatings containing S-responsive drug-loaded nanocontainers represent a promising method to mitigate SRB corrosion. However, the challenge of balancing rapid bactericide release with continuous antibacterial effect limits their practical application.

View Article and Find Full Text PDF

Drug-Silica-Cellulose Ternary Matrix for the Oral Delivery of Cyclosporine A: and evaluation.

Pharm Dev Technol

January 2025

Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal - 576104, Karnataka, India.

Purpose: Supersaturated formulations have been widely explored for improving the oral bioavailability of drugs by using mesoporous silica (MS) to generate supersaturation via molecular adsorption; however, this is followed by precipitation. Several precipitation inhibitors (PI) have been explored to prevent precipitation and maintain the drug in solution for a longer period. However, the combined approach of MS and PIs, the impact of MS and Silica, and the loading of high-molecular-weight neutral molecules such as Cyclosporine A (CsA) have not yet been explored.

View Article and Find Full Text PDF

This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.

View Article and Find Full Text PDF

Periodic mesoporous organosilica-loaded mincle agonists enhance the immunogenicity of COVID-19 subunit vaccines by dual activation of B cells and dendritic cells.

Acta Biomater

December 2024

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!