Microgel core/shell architectures as targeted agents for fibrinolysis.

Biomater Sci

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

Published: July 2018

We demonstrate the utility of microgel core/shell structures conjugated to fibrin-specific peptides as fibrinolytic agents. Poly(N-isopropylmethacrylamide) (pNIPMAm) based microgels conjugated to the peptide GPRPFPAC (GPRP) were observed to bring about fibrin clot erosion, merely through exploitation of the dynamic nature of the clots. These results suggest the potential utility of peptide-microgel hybrids in clot disruption and clotting modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8bm00119gDOI Listing

Publication Analysis

Top Keywords

microgel core/shell
8
core/shell architectures
4
architectures targeted
4
targeted agents
4
agents fibrinolysis
4
fibrinolysis demonstrate
4
demonstrate utility
4
utility microgel
4
core/shell structures
4
structures conjugated
4

Similar Publications

Microgels are versatile materials with applications across biomedicine, materials science, and beyond. Their controllable size and composition enables tailoring specific properties, yet characterizing their internal structures on the nanoscale remains challenging. Super-resolution fluorescence microscopy (SRFM) effectively analyzes sub-μm structures, including microgels, offering a tool for investigating more complex systems such as core-shell microgels.

View Article and Find Full Text PDF

Drying of Soft Colloidal Films.

Adv Sci (Weinh)

December 2024

Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.

Thin films made of deformable micro- and nano-units, such as biological membranes, polymer interfaces, and particle-laden liquid surfaces, exhibit a complex behavior during drying, with consequences for various applications like wound healing, coating technologies, and additive manufacturing. Studying the drying dynamics and structural changes of soft colloidal films thus holds the potential to yield valuable insights to achieve improvements for applications. In this study, interfacial monolayers of core-shell (CS) microgels with varying degrees of softness are employed as model systems and to investigate their drying behavior on differently modified solid substrates (hydrophobic vs hydrophilic).

View Article and Find Full Text PDF

In this work, poly(styrene)@poly(-isopropylmethacrylamide--2-(,-dimethyl)aminoethyl methacrylate [p(sty)@p(NIPMAM-DMAEMA)] core/shell microgel particles were produced by a two-step free-radical precipitation polymerization process. Ag nanoparticles were successfully embedded inside the sieves of a crosslinked network by using silver nitrate as the precursor salt and NaBH as the reductant. The synthesized pure and hybrid microgels were analyzed by various characterization tools, including Fourier transform infrared (FTIR) and UV-visible (UV-vis) spectroscopies, transmission electron microscopy (TEM) and dynamic light scattering (DLS).

View Article and Find Full Text PDF

Hypothesis: Poly-N-isopropylacrylamide (PNIPAM)-based microgels have garnered significant interest as effective soft particulate stabilizers because of their deformability and functionality. However, the inherent hydrophilic nature of microgel restricts their potential use in stabilizing water-in-oil (W/O) Pickering emulsions. Employing diverse polar additives can improve the hydrophobicity of microgels, thus unlocking new possibilities in inverse Pickering emulsion formation and materials fabrication.

View Article and Find Full Text PDF

Microgel particles can play a key role, e.g., in drug delivery systems, tissue engineering, advanced (bio)sensors or (bio)catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!