The accuracy of stereotactic body radiotherapy (SBRT) in the liver is limited by tumor motion. Selection of the most suitable motion mitigation strategy requires good understanding of the geometric and dosimetric consequences. This study compares the geometric and dosimetric accuracy of actually delivered respiratory gated SBRT treatments for 15 patients with liver tumors with three simulated alternative motion adaptation strategies. The simulated alternatives are MLC tracking, baseline shift adaptation by inter-field couch corrections and no intrafraction motion adaptation. The patients received electromagnetic transponder-guided respiratory gated IMRT or conformal treatments in three fractions with a 3-4 mm gating window around the full exhale position. The CTV-PTV margin was 5 mm axially and 7-10 mm cranio-caudally. The CTV and PTV were covered with 95% and 67% of the prescribed mean CTV dose, respectively. The time-resolved target position error during treatments with the four investigated motion adaptation strategies was used to calculate motion margins and the motion-induced reduction in CTV D relative to the planned dose (ΔD ). The mean (range) number of couch corrections per treatment session to compensate for tumor drift was 2.8 (0-7) with gating, 1.4 (0-5) with baseline shift adaptation, and zero for the other strategies. The motion margins were 3.5 mm (left-right), 9.4 mm (cranio-caudal) and 3.9 mm (anterior-posterior) without intrafraction motion adaptation, approximately half of that with baseline shift adaptation, and 1-2 mm with MLC tracking and gating. With 7 mm CC margins the mean (range) of ΔD for the CTV was 8.1 (0.6-29.4)%-points (no intrafraction motion adaptation), 4.0 (0.4-13.3)%-points (baseline shift adaptation), 1.0 (0.3-2.2)%-points (MLC tracking) and 0.8 (0.1-1.8)%-points (gating). With 10 mm CC margins ΔD was instead 4.8 (0.3-14.8)%-points (no intrafraction motion adaptation) and 2.9 (0.2-9.8)%-points (baseline shift adaptation). In conclusion, baseline shift adaptation can mitigate gross dose deficits without the requirement of real-time motion adaptation. MLC tracking and gating, however, more effectively ensure high similarity between planned and delivered doses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/aacdda | DOI Listing |
PLoS One
January 2025
School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.
Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.
Mater Horiz
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Recent efforts have focused on developing stimuli-responsive soft actuators that mimic the adaptive, complex, and reversible movements found in natural species. However, most hydrogel actuators are limited by their inability to combine wavelength-selectivity with reprogrammable shape changes, thereby reducing their degree of freedom in motion. To address this challenge, we present a novel strategy that integrates these capabilities by grafting fluorophores onto temperature-responsive hydrogels.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.
Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, 75390, UNITED STATES.
Real-time cone-beam computed tomography (CBCT) provides instantaneous visualization of patient anatomy for image guidance, motion tracking, and online treatment adaptation in radiotherapy. While many real-time imaging and motion tracking methods leveraged patient-specific prior information to alleviate under-sampling challenges and meet the temporal constraint (< 500 ms), the prior information can be outdated and introduce biases, thus compromising the imaging and motion tracking accuracy. To address this challenge, we developed a framework (DREME) for real-time CBCT imaging and motion estimation, without relying on patient-specific prior knowledge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!