Binding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8b) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (hHCN1, mHCN2, rbHCN4) and in the cardiac current I in rabbit and mouse sinoatrial node cardiomyocytes. Guided by an NMR-derived structural model that identifies the key molecular interactions between TRIP8b and the HCN CNBD, we further designed a cell-penetrating peptide (TAT-TRIP8b) which successfully prevented β-adrenergic activation of mouse I leaving the stimulation of the L-type calcium current (I) unaffected. TRIP8b represents a novel approach to selectively control HCN activation, which yields the promise of a more targeted pharmacology compared to pore blockers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023613PMC
http://dx.doi.org/10.7554/eLife.35753DOI Listing

Publication Analysis

Top Keywords

hcn channels
12
mammalian hyperpolarization-activated
8
hyperpolarization-activated cyclic
8
cyclic nucleotide-gated
8
nucleotide-gated hcn
8
control hcn
8
trip8b hcn
8
hcn
6
trip8b
6
synthetic peptide
4

Similar Publications

iPSC-Derived Biological Pacemaker-From Bench to Bedside.

Cells

December 2024

Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.

Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control.

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) can lead to severe neuropathic pain and increased risk of myocardial infarction and heart failure; therefore, the use of analgesics against SCI-induced pain should be minimized because of their adverse effects on the cardiovascular system. Ivabradine, a blocker of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, is used as a bradycardic agent, but recent studies focused on it as an analgesic agent for peripheral neuropathic pain. However, the analgesic effects of ivabradine on central neuropathic pain, such as SCI-induced pain, have not been examined.

View Article and Find Full Text PDF

In the human heart, the binding of cyclic adenosine monophosphate (cAMP), a second messenger, to hyperpolarization and cyclic nucleotide-gated (HCN) regulates the automaticity of pacemaker cells. Recent single-molecule binding studies show that cAMP bound to each subunit of purified tetrameric HCN channels independently, in contrast to findings in cells. To explore the lipid membrane's role in cAMP regulation, we reconstituted purified human HCN channels in various lipid nanodiscs and resolved single molecule ligand-binding dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • HCN ion channels play a key role in cellular activity and pain perception, with propofol acting as an analgesic by inhibiting their function.
  • Researchers used a propofol analog to pinpoint binding sites on the human HCN1 isoform, revealing a specific pocket formed by certain residues in the channel.
  • Mutations in this binding pocket affect propofol's ability to modulate HCN1 currents, highlighting its specific binding mechanism and offering insights for developing targeted HCN channel modulators.
View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play a critical role in regulating neuronal and cardiac rhythmicity, with their function being modulated by cyclic nucleotide binding. Dysfunction of HCN ion channels leads to the genesis of several diseases such as arrhythmia, bradycardia, or epilepsy. This study employs a multidisciplinary approach integrating mutagenesis, ligand binding assays, and molecular dynamics (MD) simulations combined with dynamic pharmacophore studies to investigate the impact of single residue mutations within the cyclic nucleotide-binding domain (CNBD) of HCN4 channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!