Screening for Exotic Forest Pathogens to Increase Survey Capacity Using Metagenomics.

Phytopathology

First, second, and sixth authors: Canadian Food Inspection Agency (CFIA), 3851 Fallowfield Road, Ottawa, Ontario, K2H 8P9, Canada; third author: Natural Resources Canada, Laurentian Forestry Centre, 1055 Du P.E.P.S. Street, P.O. Box 10380 Québec, Québec, G1V 4C7, Canada; fourth author: CFIA, 4321 Still Creek Dr, Burnaby, British Columbia, V5C 6S7, Canada; and fifth author: Institut de biologie intégrative et des systèmes, 1030 avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.

Published: December 2018

Anthropogenic activities have a major impact on the global environment. Canada's natural resources are threatened by the spread of fungal pathogens, which is facilitated by agricultural practices and international trade. Fungi are introduced to new environments and sometimes become established, in which case they can cause disease outbreaks resulting in extensive forest decline. Here, we describe how a nationwide sample collection strategy coupled to next-generation sequencing (NGS) (i.e., metagenomics) can achieve fast and comprehensive screening for exotic invasive species. This methodology can help provide guidance to phytopathology stakeholders such as regulatory agencies. Several regulated invasive species were monitored by processing field samples collected over 3 years (2013 to 2015) near high-risk areas across Canada. Fifteen sequencing runs were required on the Ion Torrent platform to process 398 samples that yielded 45 million reads. High-throughput screening of fungal and oomycete operational taxonomic units using customized fungi-specific ribosomal internal transcribed spacer 1 barcoded primers was performed. Likewise, Phytophthora-specific barcoded primers were used to amplify the adenosine triphosphate synthase subunit 9-nicotinamide adenine dinucleotide dehydrogenase subunit 9 spacer. Several Phytophthora spp. were detected by NGS and confirmed by species-specific quantitative polymerase chain reaction (qPCR) assays. The target species Heterobasidion annosum sensu stricto could be detected only through metagenomics. We demonstrated that screening target species using a variety of sampling techniques and NGS-the results of which were validated by qPCR-has the potential to increase survey capacity and detection sensitivity, reduce hands-on time and costs, and assist regulatory agencies to identify ports of entry. Considering that early detection and prevention are the keys in mitigating invasive species damage, our method represents a substantial asset in plant pathology management.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-02-18-0028-RDOI Listing

Publication Analysis

Top Keywords

invasive species
12
screening exotic
8
increase survey
8
survey capacity
8
regulatory agencies
8
barcoded primers
8
target species
8
species
5
screening
4
exotic forest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!