Monitoring N Chemical Shifts During Protein Folding by Pressure-Jump NMR.

J Am Chem Soc

Laboratory of Chemical Physics, NIDDK , National Institutes of Health, Bethesda , Maryland 20892-0520 , United States.

Published: July 2018

Pressure-jump hardware permits direct observation of protein NMR spectra during a cyclically repeated protein folding process. For a two-state folding protein, the change in resonance frequency will occur nearly instantaneously when the protein clears the transition state barrier, resulting in a monoexponential change of the ensemble-averaged chemical shift. However, protein folding pathways can be more complex and contain metastable intermediates. With a pseudo-3D NMR experiment that utilizes stroboscopic observation, we measure the ensemble-averaged chemical shifts, including those of exchange-broadened intermediates, during the folding process. Such measurements for a pressure-sensitized mutant of ubiquitin show an on-pathway kinetic intermediate whose N chemical shifts differ most from the natively folded protein for strands β5, its preceding turn, and the two strands that pair with β5 in the native structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119464PMC
http://dx.doi.org/10.1021/jacs.8b04833DOI Listing

Publication Analysis

Top Keywords

chemical shifts
12
protein folding
12
folding process
8
ensemble-averaged chemical
8
protein
7
folding
5
monitoring chemical
4
shifts protein
4
folding pressure-jump
4
pressure-jump nmr
4

Similar Publications

Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO-BaTiO core-shell nanowires (BTO@TiO) upon polarization in different pH environments.

View Article and Find Full Text PDF

The fused heterocycle 1-(imidazo[5,1-a]isoquinolin-3-yl)naphthalen-2-ol (LH) has been synthesized and characterized by spectroscopic methods. Probe LH upon irradiation with λ = 336 nm exhibited strong fluorescence with λ = 437 nm in MeOH/HEPES buffer (5 mM, pH = 7.4, 2:8, v/v).

View Article and Find Full Text PDF

Solvatochromism and cis-trans isomerism in azobenzene-4-sulfonyl chloride.

Photochem Photobiol Sci

January 2025

CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.

Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S ← S) and π*-n (S ← S) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.

View Article and Find Full Text PDF

The antibiotic metronidazole (MNZ) has gained interest as a potential MRI contrast agent for imaging hypoxia. N-labeled MNZ can be efficiently hyperpolarized via SABRE-SHEATH (Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), but the envisioned MRI approach requires that MNZ rapidly undergoes structural changes in hypoxic environments with significant N frequency differences manifested in its downstream metabolic products. We have performed NMR studies of the anticipated metabolic product amino-MNZ (despite anticipated stability concerns) accompanied by computational density functional theory (DFT) studies to predict the N chemical shifts of different relevant species.

View Article and Find Full Text PDF

Critical review of the criterion of polysaccharide purity.

Carbohydr Polym

March 2025

School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong. Electronic address:

Natural polysaccharides attract scientists and industries' interest with diverse applications in biomaterials, immune regulation, gut microbiota regulation, food additives, and more. Nevertheless, the absence of standardized purity criteria created significant challenges in characterizing polysaccharides, leading to varied and complicated structures, and impeding progress in research and development. Consequently, it is essential to obtain samples that adhere to high-level and unified purity standards for effective polysaccharide research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!