A new approach to increase the downsize scalability of perpendicular STT-MRAM is presented. It consists of significantly increasing the thickness of the storage layer in out-of-plane magnetized tunnel junctions (pMTJ) as compared to conventional pMTJ in order to induce a perpendicular shape anisotropy (PSA) in this layer. This PSA is obtained by depositing a thick ferromagnetic (FM) layer on top of an MgO/FeCoB based magnetic tunnel junction (MTJ) so that the thickness of the storage layer is of the order of or larger than the diameter of the MTJ pillar. In contrast to conventional spin transfer torque magnetic random access memory (STT-MRAM) wherein the demagnetizing energy opposes the interfacial perpendicular magnetic anisotropy (iPMA), in these novel memory cells, both PSA and iPMA contributions favor the out-of-plane orientation of the storage layer magnetization. Using thicker storage layers in these PSA-STT-MRAMs has several advantages. Due to the PSA, very high and easily tunable thermal stability factors can be achieved, even down to sub-10 nm diameters. Moreover, a low damping material can be used for the thick FM material thus leading to a reduction of the write current. The paper describes this new PSA-STT-MRAM concept, practical realization of such memory arrays, magnetic characterization demonstrating thermal stability factor above 200 for MTJs as small as 8 nm in diameter and possibility to maintain the thermal stability factor above 60 down to 4 nm diameter.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr01365aDOI Listing

Publication Analysis

Top Keywords

storage layer
12
thermal stability
12
perpendicular shape
8
shape anisotropy
8
thickness storage
8
stability factor
8
magnetic
5
layer
5
highly thermally
4
thermally stable
4

Similar Publications

Urinary catheters are commonly used in medical practice to drain and monitor urine of patients. However, urinary catheterisation is associated with the risk of developing catheter-associated urinary tract infections (CAUTIs), which can result in life-threatening sepsis that requires antibiotics for treatment. Using the layer-by-layer (LbL) technique, we assembled a multilayer catheter comprising nine quadruple layers (9QL) of alginate, chlorhexidine (CHX), alginate and poly(β-amino ester) (PBAE) built upon an amino-functionalised silicone.

View Article and Find Full Text PDF

Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.

View Article and Find Full Text PDF

Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.

View Article and Find Full Text PDF

Conversion electrodes, such as antimony (Sb), are high energy density electrode materials for sodium-ion batteries (NIBs). These materials are limited in their performance due to the mechanical instability of these systems resulting from volume expansion of the material during cycling. Stabilizing conversion materials using a conductive polymer binder (CPB) protective layer is an effective way to enhance the performance of these materials.

View Article and Find Full Text PDF

Understanding plasmon damping in gold nanorods (AuNRs) is crucial for optimizing their use in photochemical processes and biosensing. This study used dark-field microscopy and spectroscopy to explore plasmon damping in single AuNRs on graphene monolayers (AuNR@GL) with pyridine derivatives as adsorbates. The Au-graphene heterostructure caused a Fermi-level downshift, making graphene a dominant electron acceptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!