Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule-lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.8b01127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!