Multiparametric magnetic resonance imaging (mpMRI), which combines traditional anatomic and newer quantitative MRI methods, has been shown to result in improved voxel-wise classification of prostate cancer as compared with any single MRI parameter. While these results are promising, substantial heterogeneity in the mpMRI parameter values and voxel-wise prostate cancer risk has been observed both between and within regions of the prostate. This suggests that classification of prostate cancer can potentially be improved by incorporating structural information into the classifier. In this paper, we propose a novel voxel-wise classifier of prostate cancer that accounts for the anatomic structure of the prostate by Bayesian hierarchical modeling, which can be combined with post hoc spatial Gaussian kernel smoothing to account for residual spatial correlation. Our proposed classifier results in significantly improved area under the ROC curve (0.822 vs 0.729, P < .001) and sensitivity corresponding to 90% specificity (0.599 vs 0.429, P < .001), compared with a baseline model that does not account for the anatomic structure of the prostate. Furthermore, the classifier can also be applied on voxels with missing mpMRI parameters, resulting in similar performance, which is an important practical consideration that cannot be easily accommodated using regression-based classifiers. In addition, our classifier achieved high computational efficiency with a closed-form solution for the posterior predictive cancer probability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123293 | PMC |
http://dx.doi.org/10.1002/sim.7810 | DOI Listing |
West Afr J Med
September 2024
Urology Department, Dorset County Hospital, Dorchester, UK.
Introduction: Prostate cancer (PCa) is the commonest urologic cancer worldwide and the leading cause of male cancer deaths in Nigeria. In Nigeria, orchidectomy remains the primary androgen deprivation therapy. Dihydrotestosterone (DHT) is the active prostatic androgen, but its relationship with PCa severity has not been extensively studied in Africa.
View Article and Find Full Text PDFProstate Cancer Prostatic Dis
January 2025
Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan.
Sci Rep
January 2025
Department of Radiology, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, China.
We intended to investigate the potential of several transitional zone (TZ) volume-related variables for the detection of clinically significant prostate cancer (csPCa) among lesions scored as Prostate Imaging Reporting and Data System (PI-RADS) category 3. Between September 2018 and August 2023, patients who underwent mpMRI examination and scored as PI-RADS 3 were queried from our institution. The diagnostic performances of prostate-specific antigen density (PSAD), TZ-adjusted PSAD (TZPSAD), and TZ-ratio (TZ volume/whole gland prostate volume) were analyzed.
View Article and Find Full Text PDFClin Genitourin Cancer
January 2025
Cancer Prognostics and Health Outcomes Unit, Division of Urology, University of Montréal Health Center, Montréal, Québec, Canada.
Introduction: In NCCN favorable intermediate-risk (FIR) prostate cancer (PCa) patients treated with radical prostatectomy (RP), we tested the effect of upstaging and upgrading on cancer-specific mortality (CSM).
Methods: Within the SEER database (2010-2021), upstaging (≥pT3a or pN1) and upgrading (ISUP ≥3) rates in FIR RP patients were tabulated. Kaplan-Meier (KM) plots and multivariable Cox-regression models (CRMs) were fitted.
Int J Radiat Oncol Biol Phys
January 2025
The Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; Radiotherapy and Imaging Division, Institute of Cancer Research, London SM2 5NG, UK.
Purpose: In the PACE-B study, a non-randomised comparison of toxicity outcomes between stereotactic body radiotherapy (SBRT) platforms revealed fewer urinary side-effects with CyberKnife (CK) compared to conventional linac (CL) SBRT. This analysis compares baseline characteristics and planning dosimetry between the CK-SBRT and CL-SBRT cohorts in PACE-B, aiming to provide insight into possible reasons for differing toxicity outcomes between the platforms.
Methods: Dosimetric parameters for the surrogate urethra (SU), contoured urethra, bladder, bladder trigone (BT), and rectum were extracted from available CT planning scans of PACE-B SBRT patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!