1D nanowires of all-inorganic lead halide perovskites represent a good architecture for the development of polarization-sensitive optoelectronic devices due to their high absorption efficient, emission yield, and dielectric constants. However, among as-fabricated perovskite nanowires with the lateral dimensions of hundreds nanometers so far, the optical anisotropy is hindered and rarely explored owing to the invalidating of electrostatic dielectric mismatch in the physical dimensions. Here, well-aligned CsPbBr and CsPbCl nanowires with thickness T down to 15 and 7 nm, respectively, are synthesized using a vapor phase van der Waals epitaxial method. Strong emission anisotropy with polarization ratio up to ≈0.78 is demonstrated in the nanowires with T < 40 nm due to the electrostatic dielectric confinement. With the increasing of thickness, the polarization ratio remarkably reduces monotonously to ≈0.17 until T ≈140 nm; and further oscillates in a small amplitude owing to the wave characteristic of light. These findings not only represent a demonstration of perovskite-based polarization-sensitive light sources, but also advance fundamental understanding of their polarization properties of perovskite nanowires.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201801805DOI Listing

Publication Analysis

Top Keywords

strong emission
8
emission anisotropy
8
perovskite nanowires
8
electrostatic dielectric
8
polarization ratio
8
nanowires
5
ultrathin cspbx
4
cspbx nanowire
4
nanowire arrays
4
arrays strong
4

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection.

View Article and Find Full Text PDF

Analysis of Residual Stress at the Interface of Epoxy-Resin/Silicon-Wafer Composites During Thermal Aging.

Polymers (Basel)

December 2024

Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China.

During the thermal aging process of epoxy resin, microcracks, interfacial delamination, and warpage are the key factors leading to semiconductor device damage. Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs) were prepared to analyze the distribution of residual stress (RS) in epoxy resin and its thermal aging process changes. The uniaxial tensile approach and Raman spectroscopy (RAS) showed that the peak shift of aliphatic C-O in EP-Ss was negatively correlated with the external stress, and that the stress correlation coefficient was -2.

View Article and Find Full Text PDF

This study aimed to investigate the chemical composition and bioactivities of essential oils (EOs) from five Moroccan thyme species: subsp. , , subsp. , and .

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!