In vitro and in silico analyses of Vicia faba L. on Peroxisome proliferator-activated receptor gamma.

J Cell Biochem

Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.

Published: September 2018

AI Article Synopsis

  • Researchers investigated Faba bean (Vicia faba L.) extracts as potential antidiabetic agents by examining their effects on the gene expression of PPARγ in rat cell lines.
  • The study found that concentrations of Faba bean pod extract significantly increased PPARγ expression, with the highest stimulation at 320 µg/mL showing a 5.89-fold increase compared to control.
  • In silico analysis revealed that the compound butein had the strongest inhibitory effect on PPARγ, suggesting that bioactive compounds from Faba bean could be useful in developing new diabetes treatments.

Article Abstract

The agonists of peroxisome proliferator-activated receptor gamma (PPARγ) from natural victual products were used as antidiabetic agents. Faba bean (Vicia faba L.) is a consequential legume that was known to possess potential antidiabetic activity, whose mechanism of action was unknown. The current study was focused to ascertain gene expression of the nuclear receptor PPARγ by Faba bean pod extract in rat cell lines (RINm5F).The real-time polymerase chain reaction analysis demonstrated that Faba bean pod extract in concentrations of 160 µg/mL have shown 4.97-fold stimulation compared with control. The cells treated with 320 µg/mL has shown 5.89-fold upregulation, respectively. Furthermore, in silico docking analysis was carried out against PPARγ, using the bioactive compounds identified from Faba bean pod extracts, which were known reported compounds from the literature. The results suggest that gene expression of PPARγ was inhibited by the constituents in Faba bean. In silico analysis prognosticates, butein has a high binding energy (-8.6 kcal/mol) with an atomic contact energy of -214.10, followed by Apigenin and Quercetin against PPARγ. Similarly, the percentage of interaction was high for butein, followed by Apigenin and Quercetin than other compounds comparatively. Hence, the results conclude inhibition of PPARγ by the bioactive compounds from Faba bean, which may provide insights into developing future therapeutic molecules for diabetes mellitus.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.27123DOI Listing

Publication Analysis

Top Keywords

faba bean
24
bean pod
12
faba
8
vicia faba
8
peroxisome proliferator-activated
8
proliferator-activated receptor
8
receptor gamma
8
gene expression
8
pod extract
8
pparγ bioactive
8

Similar Publications

The growing environmental pressure of the animal food chain requires a system shift toward more sustainable diets based on alternative protein sources. Emerging alternative protein sources, such as faba bean, mung bean, lentil, black gram, cowpea, quinoa, hemp, leaf proteins, microalgae, and duckweeds, are being explored for their potential in meeting global protein demand and were, therefore, the subject of this review. This systematic literature review aims to understand the current knowledge on the toxicological effects and allergenic potential associated with these sources and derived protein and food products.

View Article and Find Full Text PDF

Starch-rich faba bean, yellow lentil, and yellow field pea flours were subjected to submerged fermentation using Aspergillus oryzae and Lactobacillus plantarum starter mono- or co-cultures, to increase protein contents of the flours. Fermentation mixes were supplemented with up to 35 g/L urea, ammonium sulfate and/or monoammonium phosphate as nitrogen sources. Protein contents of the flours increased 2-2.

View Article and Find Full Text PDF

Faba bean ( L.) is a valuable ingredient in plant-based foods such as meat and dairy analogues. However, its typical taste and aroma are considered off-flavours in these food applications, representing a bottleneck during processing.

View Article and Find Full Text PDF

Study on structure, properties and formation mechanism of cassava starch-faba bean protein heat-induced gel.

Int J Biol Macromol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address:

In this experiment, the effects of different concentrations of cassava starch (CS) on the gel behavior of faba bean protein (FBP) were studied, focusing on the structural characteristics, gel characteristics and physical and chemical characteristics of the gel system. Specifically, with the increase of CS concentration from 4 % to 12 %, the morphology of the sample changed from fluid to gel solid. From the molecular structure, different concentrations of CS affected the secondary and tertiary structures of FBP protein, which made aromatic amino acids move to the surface of protein and promoted the transformation from α-helix to β-sheet.

View Article and Find Full Text PDF

Protease activity of NIa-Pro determines systemic pathogenicity of clover yellow vein virus.

Virology

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:

Clover yellow vein virus (ClYVV), a potyvirus that infects various dicotyledonous plants, poses a significant threat to the cultivation of legumes. Although potyviral NIa-Pro was extensively studied in viral infection cycle and host antiviral responses, the contribution of NIa-Pro protease activity to virus systemic symptoms has not yet been reported. In this study, we developed infectious clones of a ClYVV isolated from Pisum sativum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!