A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes. | LitMetric

Electrochemical degradation of diclofenac using three-dimensional electrode reactor with multi-walled carbon nanotubes.

Environ Sci Pollut Res Int

Department of Environmental Health Engineering, School of Health, Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

Published: September 2018

The electro-oxidation treatment of aqueous solution containing diclofenac (DCF) on a Ti/RuO-TiO electrode in the presence of multi-walled carbon nanotubes (MWCNTs) was studied in a three-dimensional electrochemical (3DE) reactor. The response surface methodology (RSM) based on central composite design (CCD) was utilized to determine the influence of different factors. The results revealed that the obtained polynomial experimental model had a high coefficient of determination (R = 0.9762) based on analysis of variance. The optimum condition for the removal of DCF by the 3DE process was obtained with the initial pH of 3.8, the initial DCF concentration of 4 mg/L, the current density of 20 mA/cm, the particle electrode concentration of 70 mg/L, and the electrolysis time of 85 min. The quadratic model developed for DCF removal and subsequently the analysis of the F value illustrated that the initial pH was the most important factor in the removal of DCF. The comparative experiments between electrochemical processes showed the high electrocatalytic activity and removal efficiency of the 3DE reactor with the MWCNT particle electrode. The results also showed that the Ti/RuO-TiO electrode, in addition to its high stability, had a very good electrocatalytic activity in the 3D reactor. The stability and reusability test proved that MWCNTs, as a particle electrode, had a potential to improve the long-term electrocatalytic degradation of DCF in the aqueous solutions. Based on the identified intermediate compounds along with the results of other studies, a possible pathway for the electrochemical oxidation of DCF by the 3DE process catalyzed with MWCNTs was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-2527-8DOI Listing

Publication Analysis

Top Keywords

particle electrode
12
multi-walled carbon
8
carbon nanotubes
8
ti/ruo-tio electrode
8
3de reactor
8
removal dcf
8
dcf 3de
8
3de process
8
electrocatalytic activity
8
dcf
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!