Sonicated activated carbon (SAC) was developed and used to remove ibuprofen and ketoprofen from aqueous media by adsorption. A standard activated carbon sample (AC) was used as comparison. Both adsorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), N adsorption isotherms (Brunauer, Emmett, and Teller (BET)), helium gas pycnometry, and scanning electron microscopy (SEM). In the adsorption study, kinetics, equilibrium, and thermodynamics were evaluated. SAC presented better characteristics than AC. Pseudo-second-order model was adequate to predict the kinetic curves. The isotherm data obeyed the Sips model. Thermodynamic results revealed a spontaneous and endothermic process, where physisorption was involved. The maximum adsorption capacities of SAC were 134.5 and 89.2 mg g for ibuprofen and ketoprofen, respectively. For AC, the maximum adsorption capacities were 115.1 and 79.1 mg g for ibuprofen and ketoprofen, respectively. The sonication technique presented great potential to improve the AC characteristics, generating a promising material (SAC) for ibuprofen and ketoprofen adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-2525-x | DOI Listing |
Int J Pharm
January 2025
Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
Hydrophobicity is associated with drug transport across membranes and is expressed as the partition coefficient log P for neutral drugs and the distribution coefficient log D for acidic and basic drugs. The log P and log D predictions are deductively (or with artificial intelligence) estimated as the sum of the partial contributions of the scaffold and substituents of a single molecule and are used widely and affirmatively. However, their predictions have not always been comprehensively accurate beyond scaffold differences.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
December 2024
Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkiye.
A new sample preparation and determination method, including HPLC-DAD analysis after Magnetic Solid Phase Extraction (MSPE), was developed to monitor the trace amounts of two types of nonsteroidal anti-inflammatory drugs (NSAIDs), Ibuprofen (IBP) and Ketoprofen (KP). In the proposed method, IBP and KP analytes were extracted from newly synthesized magnetic-based sorbent in a pH 4.0 buffer medium and enriched by desorbing again with ethanol to a smaller volume before chromatographic determinations.
View Article and Find Full Text PDFChemosphere
November 2024
Unit of Persistent Organic Pollutants and Emerging Pollutants in Environment, Department of Environment, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain. Electronic address:
The increasing consumption of medicines and the lack of efficient technologies in wastewater treatment plants (WWTPs) can release pharmaceutically active compounds (PhACs) into any given river with the subsequent risk to the environment and human health. To assess the occurrence and transfer pathways of PhACs through the river ecosystem, 22 PhACs and one metabolite were analyzed in WWTPs, river sediments and fish collected alongside the Tagus River basin between 2020 and 2022. All the matrices presented at least two drugs being azithromycin the only one quantified in all of them.
View Article and Find Full Text PDFWater Environ Res
November 2024
Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
This review presents a comprehensive analysis of current research on biological treatment processes for removing pharmaceutical compounds (PhCs) from wastewater. Unlike previous studies on this topic, our study specifically delves into the effectiveness and drawbacks of various treatment approaches such as traditional wastewater treatment facilities (WWTP), membrane bioreactors (MBRs), constructed wetlands (CW), and moving bed biofilm reactors (MBBR). Through the examination and synthesis of information gathered from more than 200 research studies, we have created a comprehensive database that delves into the effectiveness of eliminating 19 particular PhCs, including commonly studied compounds such as acetaminophen, ibuprofen, diclofenac, naproxen, ketoprofen, indomethacin, salicylic acid, codeine, and fenoprofen, amoxicillin, azithromycin, ciprofloxacin, ofloxacin, tetracycline, atenolol, propranolol, and metoprolol.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Engineering, University of Northern British Columbia, Prince George, BC V2N AZ9, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!