Background: Soft-tissue deficiencies pose a challenge in a variety of disease processes when the end result is exposure of underlying tissue. Although multiple surgical techniques exist, the transposition of tissue from one location to another can cause donor-site morbidity, long incisions prone to dehiscence, and poor patient outcomes as a result. Use of tissue expansion prior to grafting procedures has been shown to have success in increasing available soft tissue to aid in repairing wounds. However, the current tissue expanders have biomechanical limits to the extent and rate of expansion that usually exceeds the tissue capacity, leading to incisional dehiscence or expander extrusion. Understanding the baseline biomechanical properties of the tissue to be expanded would provide useful information regarding surgical protocol employed for a given anatomical location. Therefore, the aim of this study was to test and compare the baseline (preexpansion) biomechanical properties of different common expansion sites in dogs.
Methods: Four samples measuring approximately 20 × 15 × 1 mm were harvested from 8 dogs. The samples were collected from the hard palate, alveolar mucosa, scalp, and chest of the animal and analyzed for stress, strain, maximum tangential stiffness, maximum tangential modulus, and tensile strength using a Texture Technologies TA.XT texture analyzer with corresponding biomechanical measurement software. Samples were compared as to their baseline biomechanical properties prior to any soft-tissue expansion. Histological sections of the samples were analyzed using hematoxylin eosin in an attempt to correlate the histological description to the biomechanical properties seen during testing. Summary statistics (mean, standard deviation, standard error, range) are reported for stress, strain, maximum tangential stiffness, maximum tangential modulus, and tensile strength and for the histological parameters by intraoral site. Analysis of variance was used to compare the biomechanical and histological parameters among the 4 locations while accounting for multiple measurements from each dog.
Results: The scalp had significantly higher maximum stress (σ) than chest, mucosa, and palate ( < 0.0001), with no differences among the other 3 locations ( > 0.63). Scalp site also had significantly higher maximum tangential modulus (ε) than chest, mucosa, and palate ( < 0.006), with no differences among the other 3 locations ( > 0.17). The locations did not have significantly different maximum tangential stiffness (k; = 0.72). Histologically, 2 separate patterns of collagen disruption were evident.
Conclusion: Although different results were obtained than theorized, this study showed that the scalp had the greatest resiliency to expand prior to tearing, and the highest tangential modulus, with all sites having statistically similar modulus of elasticity. Based on this study, the scalp could be expanded more aggressively compared with the other sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5999427 | PMC |
http://dx.doi.org/10.1097/GOX.0000000000001773 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093 China. Electronic address:
Hypothesis: The depth of research into the mechanism of droplet impacting structured surfaces dictates the efficacy of their applications. The impact stress generated when a droplet impacts a surface is a pivotal factor influencing the efficiency of surface applications, ultimately determining the extent of surface wear. Despite the systematic examination of impact force, there remains a scarcity of research on impact stress and its mitigation strategies.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou, 450001, China.
This paper presents an analytical solution derived with force method for the internal forces in the ring lining of maglev train tunnels, which are typically in a circular section and shallowly buried with low vacuum air pressure in the lining. The model incorporates the vacuum pressure induced by the differences in air pressures outside and inside the lining, and the vacuum pressure is assumed to be the active load exerting to the outside of the lining. The model assumes the vertical overburden acting on the lining is proportional to the soil depth at every particular point along the tunnel lining circumference.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Engineering Research Center of Diagnosis Technology and Instruments of Hydro-Construction, Chongqing Jiaotong University, Chongqing 400074, China.
Understanding fracture mechanics in rock-like materials under compression-shear condition is critical for predicting failure mechanisms in various engineering applications, such as mining and civil infrastructure. This study conducted uniaxial compression tests on cubic gypsum specimens of varying sizes (side lengths of 75 mm, 100 mm, 125 mm, and 150 mm) and crack inclination angles (ranging from 0° to 90°) to assess the size effect on fracture behavior. The effects of specimen size and crack inclination on fracture characteristics, including strength, failure mode, and crack initiation angle, were analyzed based on the maximum tangential stress (MTS) criterion and the generalized maximum tangential stress (GMTS) criterion, with relative critical size (α) and relative openness ().
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, 3/7 Paula Valdena Street, LV-1048 Riga, Latvia.
Using a pilot-scale chamber with an interior capacity of 340 L, European aspen () wood boards were thermally modified (TM) under pressure in nitrogen at a maximum temperature of 160-170 °C, for 60-180 min, and with an initial nitrogen pressure of 4-5 bar. After the TM process, aspen wood was characterised by dimensional changes, mass loss (ML), equilibrium moisture content (EMC), antiswelling efficiency (ASE), cell wall total water capacity (CWTWC), modulus of rupture (MOR), modulus of elasticity (MOE), and Brinell hardness (BH). This work offers fresh insights into the characteristics of aspen wood following a closed TM process in pressurised nitrogen.
View Article and Find Full Text PDFNanotechnology
December 2024
School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!