Hydroxyproline-rich glycoproteins (HRGPs) are abundant cell wall components involved in mycorrhizal symbiosis, but little is known about their function in orchid mycorrhizal association. To gain further insight into the role of HRGPs in orchid symbiosis, the location and function of HRGPs were investigated during symbiotic germination of . The presence of JIM11 epitope in developing protocorms was determined using immunodot blots and immunohistochemical staining procedures. Real-time PCR was also employed to verify the expression patterns of genes coding for extensin-like genes selected from the transcriptomic database. The importance of HRGPs in symbiotic germination was further investigated using 3,4-dehydro-L-proline (3,4-DHP), an inhibitor of HRGP biosynthesis. In symbiotic cultures, immunodot blots of JIM11 signals were moderate in mature seeds, and the signals became stronger in swollen embryos. After germination, signal intensities decreased in developing protocorms. In contrast, in asymbiotic cultures, JIM11 signals were much lower as compared with those stages in symbiotic cultures. Immunofluorescence staining enabled the visualization of JIM11 epitope in mature embryo and protocorm cells. Positive signals were initially localized in the larger cells near the basal (suspensor) end of uninfected embryos, marking the future colonization site of fungal hyphae. After 1 week of inoculation, the basal end of embryos had been colonized, and a strong signal was detected mostly at the mid- and basal regions of the enlarging protocorm. As protocorm development progressed, the signal was concentrated in the colonized cells at the basal end. In colonized cells, signals were present in the walls and intracellularly associated with hyphae and the pelotons. The precise localization of JIM11 epitope is further examined by immunogold labeling. In the colonized cells, gold particles were found mainly in the cell wall and the interfacial matrix near the fungal cell wall. Four extensin-like genes were verified to be highly up-regulated in symbiotically germinated protocorms as compared to asymbiotically germinated ones. The 3,4-DHP treatment inhibited the accumulation of HRGPs and symbiotic seed germination. In these protocorms, fungal hyphae could be found throughout the protocorms. Our results indicate that HRGPs play an important role in symbiotic germination. They can serve as markers for fungal colonization, establishing a symbiotic compartment and constraining fungal colonization inside the basal cells of protocorms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996918PMC
http://dx.doi.org/10.3389/fpls.2018.00552DOI Listing

Publication Analysis

Top Keywords

symbiotic germination
16
cell wall
12
jim11 epitope
12
colonized cells
12
hydroxyproline-rich glycoproteins
8
symbiotic
8
developing protocorms
8
immunodot blots
8
extensin-like genes
8
hrgps symbiotic
8

Similar Publications

Interactions with mycorrhizal fungi are increasingly recognized as crucial ecological factors influencing orchids' distribution and local abundance. While some orchid species interact with multiple fungal partners, others show selectivity in their mycorrhizal associations. Additionally, orchids that share the same habitat often form relationships with different fungal partners, possibly to reduce competition and ensure stable coexistence.

View Article and Find Full Text PDF

Excessive accumulation of auxin inhibits protocorm development during germination of Paphiopedilum spicerianum.

Plant Cell Rep

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Excessive auxin accumulation inhibits protocorm development during germination of Paphiopedilum spicerianum, delaying shoot meristem formation by downregulating boundary genes (CUC1, CUC2, CLV3) and promoting fungal colonization, essential for seedling establishment. Paphiopedilum, possess high horticultural and conservational value. Asymbiotic germination is a common propagation method, but high rates of protocorm developmental arrest hinder seedling establishment.

View Article and Find Full Text PDF

Orchidaceae is one of the largest plant families and stands out for its wide variety of flowers with ornamental and environmental importance. Cattleya is one of the main commercial genera, presenting a great diversity of species and hybrids that attract the attention of collectors, orchid enthusiasts, and consumers. In their natural environment, orchids associate with mycorrhizal fungi, which are responsible for providing carbon and other nutrients during seed germination.

View Article and Find Full Text PDF

The treatment of biodegradable plastics through composting has garnered increasing attention. This study aimed to investigate the effects of Biochar FN1 bacteria and ferrous sulfate on nitrogen retention, greenhouse gas emissions, and degradable plastics during composting and to elucidate their synergistic mechanisms on microbial communities. Compared with the control, applying biochar-loaded FN1 bacteria composites combined with Ferrous sulfate (SGC) markedly accelerated organic matter degradation and reduced cumulative CO and NH emissions.

View Article and Find Full Text PDF

Immunolocalization of Extensin and Pectin Epitopes in Protocorm and Protocorm-like Bodies.

Cells

November 2024

Laboratory of Plant Cytology and Embryology, Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland.

(L.) Rich, an endangered member of the Orchidaceae family, is found in alkaline fens. With the declining populations of , there is a pressing need to reintroduce this species in Central Europe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!