Major advances in wheat production are needed to address global food insecurity under future climate conditions, such as high temperatures. The grain yield of bread wheat ( L.) is a quantitatively inherited complex trait that is strongly influenced by interacting genetic and environmental factors. Here, we conducted global QTL analysis for five yield-related traits, including spike yield, yield components and plant height (PH), in the Nongda3338/Jingdong6 doubled haploid (DH) population using a high-density SNP and SSR-based genetic map. A total of 12 major genomic regions with stable QTL controlling yield-related traits were detected on chromosomes 1B, 2A, 2B, 2D, 3A, 4A, 4B, 4D, 5A, 6A, and 7A across 12 different field trials with timely sown (normal) and late sown (heat stress) conditions. Co-location of yield components revealed significant tradeoffs between thousand grain weight (TGW) and grain number per spike (GNS) on chromosome 4A. Dissection of a "QTL-hotspot" region for grain weight on chromosome 4B was helpful in marker-assisted selection (MAS) breeding. Moreover, this study identified a novel QTL for heat susceptibility index of thousand grain weight (HSITGW) on chromosome 4BL that explains approximately 10% of phenotypic variation. and were coincident with the dwarfing genes , and , and haplotype analysis revealed their pleiotropic architecture with yield components. Overall, our findings will be useful for elucidating the genetic architecture of yield-related traits and developing new wheat varieties with high and stable yield.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5996883 | PMC |
http://dx.doi.org/10.3389/fpls.2018.00529 | DOI Listing |
Genes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
Plant Genome
March 2025
Department of Agronomy, Kansas State University, Manhattan, Kansas, USA.
Barley yellow dwarf (BYD) is one of the most serious viral diseases in cereal crops worldwide. Identification of quantitative trait loci (QTLs) underlining wheat resistance to barley yellow dwarf virus (BYDV) is essential for breeding BYDV-tolerant wheat cultivars. In this study, a recombinant inbred line (RIL) population was developed from the cross between Jagger (PI 593688) and a Jagger mutant (JagMut1095).
View Article and Find Full Text PDFJ Exp Bot
December 2024
Department of Agricultural and Forest Sciences and Engineering, University of Lleida-AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain.
Barley traits that determine grain number are established between jointing and flowering. The timing of flowering is critical for adaptation and yield as it affects the fertility of both the main shoot and tiller spikes. The Photoperiod-H1 (PPD-H1) gene controls flowering time and impacts spike fertility and yield in barley; however, it is not known if these effects are truly pleiotropic or indirect.
View Article and Find Full Text PDFFront Plant Sci
January 2025
South Asia Hub, International Rice Research Institute (IRRI), International Crops Institute for the Semi-Arid Tropics (ICRISAT) Campus, Hyderabad, Telangana, India.
In the rapid climate change scenario and subsequent rainfall patterns, drought has emerged as a bottleneck for crop production across crops, especially in rainfed rice. Drought significantly affects the development and production of most modern rice cultivars. Thus, recent breeding efforts have aimed to integrate drought tolerance traits in existing rice varieties through conventional and molecular approaches.
View Article and Find Full Text PDFHortic Res
January 2025
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China, 100193.
Appropriate root system architecture (RSA) can improve alfalfa yield, yet its genetic basis remains largely unexplored. This study evaluated six RSA traits in 171 alfalfa genotypes grown under controlled greenhouse conditions. We also analyzed five yield-related traits in normal and drought stress environments and found a significant correlation (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!