Anterior Thalamic Excitation and Feedforward Inhibition of Presubicular Neurons Projecting to Medial Entorhinal Cortex.

J Neurosci

Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Sorbonne Universités, UPMC Université Paris 6, Unité Mixte de Recherche S1127, Institut du Cerveau et de la Moelle épinière, 75013 Paris, France,

Published: July 2018

The presubiculum contains head direction cells that are crucial for spatial orientation. Here, we examined the connectivity and strengths of thalamic inputs to presubicular layer 3 neurons projecting to the medial entorhinal cortex in the mouse. We recorded pairs of projection neurons and interneurons while optogenetically stimulating afferent fibers from the anterior thalamic nuclei. Thalamic input differentially affects presubicular neurons: layer 3 pyramidal neurons and fast-spiking parvalbumin-expressing interneurons are directly and monosynaptically activated, with depressing dynamics, whereas somatostatin-expressing interneurons are indirectly excited, during repetitive anterior thalamic nuclei activity. This arrangement ensures that the thalamic excitation of layer 3 cells is often followed by disynaptic inhibition. Feedforward inhibition is largely mediated by parvalbumin interneurons, which have a high probability of connection to presubicular pyramidal cells, and it may enforce temporally precise head direction tuning during head turns. Our data point to the potential contribution of presubicular microcircuits for fine-tuning thalamic head direction signals transmitted to medial entorhinal cortex. How microcircuits participate in shaping neural inputs is crucial to understanding information processing in the brain. Here, we show how the presubiculum may process thalamic head directional information before transmitting it to the medial entorhinal cortex. Synaptic inputs from the anterior thalamic nuclei excite layer 3 pyramidal cells and parvalbumin interneurons, which mediate disynaptic feedforward inhibition. Somatostatin interneurons are excited indirectly. Presubicular circuits may switch between two regimens depending on the angular velocity of head movements. During immobility, somatostatin-pyramidal cell interactions could support maintained head directional firing with attractor-like dynamics. During rapid head turns, in contrast, parvalbumin-mediated feedforward inhibition may act to tune the head direction signal transmitted to medial entorhinal cortex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231540PMC
http://dx.doi.org/10.1523/JNEUROSCI.0014-18.2018DOI Listing

Publication Analysis

Top Keywords

medial entorhinal
20
entorhinal cortex
20
anterior thalamic
16
feedforward inhibition
16
head direction
16
thalamic nuclei
12
head
9
thalamic excitation
8
presubicular neurons
8
neurons projecting
8

Similar Publications

Successful navigation relies on reciprocal transformations between spatial representations in world-centered (allocentric) and self-centered (egocentric) frames of reference. The neural basis of allocentric spatial representations has been extensively investigated with grid, border, and head-direction cells in the medial entorhinal cortex (MEC) forming key components of a 'cognitive map'. Recently, egocentric spatial representations have also been identified in several brain regions, but evidence for the coexistence of neurons encoding spatial variables in each reference frame within MEC is so far lacking.

View Article and Find Full Text PDF

Background: Alzheimer's Disease is marked by the gradual aggregation of pathological proteins, Tau and beta-amyloid, throughout various areas of the brain. The progression of these pathologies follows a consistent pattern, impacting various cellular populations as it advances through each brain region. Previously, we used Bayesian algorithms to create a continuous progression score to mathematically capture the collective aggregation of multiple pathological variables within a specific brain region.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Cerebral small vessel disease (CSVD), which includes cerebral amyloid angiopathy (CAA) and arteriolosclerosis, often co-occurs with Alzheimer's disease (AD) pathology. The medial temporal lobe (MTL) is susceptible to hosting multiple AD pathologies, such as neurofibrillary tangles (NFTs), amyloid-β plaques, phospho-Tar-DNA-Binding-Protein-43 (pTDP-43), as well as CSVD. Whether a causal relationship between these pathologies exists remains largely unknown, but one potential linking mechanism is the dysfunction of perivascular clearance.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of California, San Francisco, Weill Institute for Neurosciences, San Francisco, CA, USA.

Background: Alzheimer's disease (AD) and other dementia risk may be influenced by the immune function and associated with several white blood cell type counts. In cognitively normal Black, Hispanic, and non-Hispanic white older adults we related three white blood cell types previously associated with AD risk to tau positron emission tomography (PET) values in the medial temporal lobe (MTL), where tau accumulates early. We assessed whether amyloid positivity moderated this relationship.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Alzheimer's disease (AD) related pathologies (i.e., neurofibrillary tangles [NFTs], amyloid-β plaques, and phosphorylated-TAR-DNA-binding-protein-43 [pTDP-43]) differ across sexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!