A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Throughput Screening of Type III Secretion Determinants Reveals a Major Chaperone-Independent Pathway. | LitMetric

Numerous Gram-negative bacterial pathogens utilize type III secretion systems (T3SSs) to inject tens of effector proteins directly into the cytosol of host cells. Through interactions with cognate chaperones, type III effectors are defined and recruited to the sorting platform, a cytoplasmic component of these membrane-embedded nanomachines. However, notably, a comprehensive review of the literature reveals that the secretion of most type III effectors has not yet been linked to a chaperone, raising questions regarding the existence of unknown chaperones as well as the universality of chaperones in effector secretion. Here, we describe the development of the first high-throughput type III secretion (T3S) assay, a semiautomated solid-plate-based assay, which enables the side-by-side comparison of secretion of over 20 effectors under a multitude of conditions. Strikingly, we found that the majority of effectors are secreted at equivalent levels by wild-type and variants of that no longer encode one or all known T3S effector chaperones. In addition, we found that effectors are efficiently secreted from a laboratory strain of expressing the core type III secretion apparatus (T3SA) but no other specific proteins. Furthermore, we observed that the sequences necessary and sufficient to define chaperone-dependent and -independent effectors are fundamentally different. Together, these findings support the existence of a major, previously unrecognized, noncanonical chaperone-independent secretion pathway that is likely common to many T3SSs. Many bacterial pathogens use specialized nanomachines, including type III secretion systems, to directly inject virulence proteins (effectors) into host cells. Here, we present the first extensive analysis of chaperone dependence in the process of type III effector secretion, providing strong evidence for the existence of a previously unrecognized chaperone-independent pathway. This noncanonical pathway is likely common to many bacteria, as an extensive review of the literature reveals that the secretion of multiple type III effectors has not yet been knowingly linked to a chaperone. While additional studies will be required to discern the molecular details of this pathway, its prevalence suggests that it can likely serve as a new target for the development of antimicrobial agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016238PMC
http://dx.doi.org/10.1128/mBio.01050-18DOI Listing

Publication Analysis

Top Keywords

type iii
36
iii secretion
20
iii effectors
12
secretion
11
type
9
iii
9
chaperone-independent pathway
8
bacterial pathogens
8
secretion systems
8
host cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!