A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes. | LitMetric

Sideways falls impose high stress on the thin superolateral cortical bone of the femoral neck, the region regarded as a fracture-prone region of the hip. Exercise training is a natural mode of mechanical loading to make bone more robust. Exercise-induced adaptation of cortical bone along the femoral neck has been previously demonstrated. However, it is unknown whether this adaption modulates hip fracture behavior. The purpose of this study was to investigate the influence of specific exercise loading history on fall-induced hip fracture behavior by estimating fracture load and location with proximal femur finite element (FE) models created from magnetic resonance images (MRI) of 111 women with distinct exercise histories: 91 athletes (aged 24.7 ± 6.1 years, >8 years competitive career) and 20 women as controls (aged 23.7 ± 3.8 years). The athletes were divided into five groups based on typical loading patterns of their sports: high-impact (H-I: 9 triple-jumpers and 10 high jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 power-lifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the H-I, O-I, and R-I groups had significantly higher (11-26%, p < 0.05) fracture loads. Also, the fracture location in the H-I and O-I groups was significantly more proximal (7-10%) compared to the controls. These results suggest that an exercise loading history of high impacts, impacts from unusual directions, or repetitive impacts increases the fracture load and may lower the risk of fall-induced hip fracture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2018.05.037DOI Listing

Publication Analysis

Top Keywords

hip fracture
12
loading history
8
modulates hip
8
fracture load
8
load location
8
finite element
8
proximal femur
8
cortical bone
8
bone femoral
8
femoral neck
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!