Precise Activation of Ammonia and Carbon Dioxide by an Iminodisilene.

Angew Chem Int Ed Engl

WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748, Garching bei München, Germany.

Published: October 2018

The activation of NH and CO is still an ambitious target for multiply bonded sub-valent silicon compounds. Now, the precise splitting of the N-H bond of ammonia by (Z)-imino(silyl)disilene 1 to give trans-1,2-adduct 2 a at low temperatures (-78 °C) is presented. According to DFT calculations, the stereospecific hydroamination follows a similar mechanism as the recently reported anti-addition of H to the Si=Si bond of 1. The aminosilane 2 b could also be obtained as the formal silylene addition product under thermodynamic reaction control. By applying low temperatures, the activation of CO with 1 selectively afforded the cis-oxadisilacyclobutanone 7-c as [2+2] cycloadduct. By performing the reaction directly at ambient temperatures, a mixture of three different-sized silacycles (4-6) was observed. Their formation was investigated theoretically and their structures were revealed with separate experiments using 1 and the oxygenation agents N O and O .

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201804472DOI Listing

Publication Analysis

Top Keywords

low temperatures
8
precise activation
4
activation ammonia
4
ammonia carbon
4
carbon dioxide
4
dioxide iminodisilene
4
iminodisilene activation
4
activation ambitious
4
ambitious target
4
target multiply
4

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

Ph3PC - A Monosubstituted C(0) Atom in Its Triplet State.

Angew Chem Int Ed Engl

January 2025

TU Dortmund: Technische Universitat Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn Str.6, 44227, Dortmund, GERMANY.

This study introduces a novel class of carbon-centered diradicals: a monosubstituted C-atom stabilized by a phosphine. The diradical Ph3P→C was photochemically generated from a diazophosphorus ylide precursor (Ph3PCN2) and characterized by EPR and isotope-sensitive ENDOR spectroscopy at low temperatures. Ph3P→C features an axial zero-field splitting parameter D = 0.

View Article and Find Full Text PDF

are ubiquitous algae and occasional pathogens of humans and animals. While rare, the infection is often fatal and treatment options are limited to antifungals with low efficiency. Here, using growth curve assays, we demonstrate that five pathogenic species of () were fully inhibited by 50-100 μg/mL of herbicide glyphosate, suggesting novel pathways that can be considered for anti-algal drug development.

View Article and Find Full Text PDF

Cold stress (CS) is a significant natural hazard, and distinguishing between plant cold resistance and sensitivity is critical for cultivar breeding and the development of germplasm resources. This study used 205 tobacco (Nicotiana tabacum L.) varieties from around the world to investigate the changes in the chlorophyll a fluorescence (OJIP) transients, JIP-test parameters, and seedling growth caused by seven days of CS (5°C) treatment.

View Article and Find Full Text PDF

Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!