Background And Objective: Urokinase-plasminogen activator (uPA) is a serine protease expressed at high basal level in normal gingival cervical fluid. Despite its known pathologic role in tissue proteolysis in periodontitis, little is known concerning uPA physiological function in oral tissue. Recent evidence in cancer cells has implicated the uPA system in DNA repair and anti-apoptotic pathways. This study is aimed to evaluate the protective function of urokinase against oxidative DNA damage in periodontal ligament (PDL) fibroblast, and to propose a new biological role for uPA in oral cavity.
Material And Methods: PDL cells were isolated from human wisdom teeth obtained from healthy donors. An oxidative stress model was created in which PDL cells were incubated with 20, 30, 40 and 60 μmol/L hydrogen peroxide. Twenty-four hours before and after peroxide treatment, cells were treated with uPA and amiloride. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide assay, apoptosis by DAPI-staining and annexin V/propidium iodide assay, and DNA breaks by alkaline comet assay. For estimating DNA damage level, γ-H2AX expression was studied using flow cytometry and immunostaining.
Results: The incubation of the peroxide-treated cells with uPA significantly increased cell viability and decreased apoptosis. A significant decrease in the number of γ-H2AX foci was seen at 30 μmol/L hydrogen peroxide in uPA-treated cells. uPA inhibition as a result of amiloride treatment, in turn, induced a reduction in cell viability. In addition, there was a significant decrease in the levels of DNA damage in uPA-treated groups as measured by the comet assay.
Conclusion: The present study brings support to the theory that uPA may have a protective role for periodontal tissue and could protect PDL fibroblasts from oxidative DNA damage and apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jre.12576 | DOI Listing |
Eur J Med Res
January 2025
Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
Glioblastoma (GBM) is the most common malignant primary brain cancer with poor prognosis due to the resistant to current treatments, including the first-line drug temozolomide (TMZ). Accordingly, it is urgent to clarify the mechanism of chemotherapeutic resistance to improve the survival rate of patients. In the present study, by integrating comprehensive non-coding RNA-seq data from multiple cohorts of GBM patients, we identified that a series of miRNAs are frequently downregulated in GBM patients compared with the control samples.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
Taking into account involvement of the RNA-binding proteins in regulation of activity of poly(ADP-ribose) polymerase 1 (PARP1), a key factor of DNA repair, the effect of the intrinsically disordered protein Sam68 (Src-associated substrate during mitosis of 68 kDa) on catalytic activity of this enzyme was studied. Plasmid containing coding sequence of the Sam68 protein was obtained. Using the obtained construct, conditions for the Sam68 expression in cells were optimized and procedure for protein purification was developed.
View Article and Find Full Text PDFToxicon
January 2025
Laboratory of Experimental Pathophysiology, Health Sciences, Universidade do Extremo Sul Catarinense. Universitário, 88806-000. Criciúma. Santa Catarina, Brazil. Electronic address:
Tityus serrulatus accident promote vast symptomatology related to toxins of the venom, which leads to a massive release of neurotransmitters, notably dopamine, affecting behavior and neurochemistry. The recommended treatment for envenomation is the antiscorpionic serum (SAEsc) administration. Related to this complexity of the Tityus serrulatus envenomation, this study aimed to assess organism responses to the venom, its impact on behavior, oxidative stress, neurochemistry, and genetic impacts, as well as the efficacy of SAEsc, especially concerning dopamine levels and genetic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!