Understanding microbial ecology can help improve biogas production in AD.

Sci Total Environ

School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK. Electronic address:

Published: November 2018

AI Article Synopsis

  • The study utilized 454-Pyrosequencing and lipid fingerprinting to connect anaerobic digestion (AD) process factors like pH and methane content with the structure of microbial communities.
  • Changes in organic loading rates and substrates stressed AD microbial communities, affecting their composition and performance.
  • Findings revealed that higher methane production was linked to diverse and stable microbial communities, with specific groups of bacteria playing key roles under varying stress conditions.

Article Abstract

454-Pyrosequencing and lipid fingerprinting were used to link anaerobic digestion (AD) process parameters (pH, alkalinity, volatile fatty acids (VFAs), biogas production and methane content) with the reactor microbial community structure and composition. AD microbial communities underwent stress conditions after changes in organic loading rate and digestion substrates. 454-Pyrosequencing analysis showed that, irrespectively of the substrate digested, methane content and pH were always significantly, and positively, correlated with community evenness. In AD, microbial communities with more even distributions of diversity are able to use parallel metabolic pathways and have greater functional stability; hence, they are capable of adapting and responding to disturbances. In all reactors, a decrease in methane content to <30% was always correlated with a 50% increase of Firmicutes sequences (particularly in operational taxonomic units (OTUs) related to Ruminococcaceae and Veillonellaceae). Whereas digesters producing higher methane content (above 60%), contained a high number of sequences related to Synergistetes and unidentified bacterial OTUs. Finally, lipid fingerprinting demonstrated that, under stress, the decrease in archaeal biomass was higher than the bacterial one, and that archaeal Phospholipid etherlipids (PLEL) levels were correlated to reactor performances. These results demonstrate that, across a number of parameters such as lipids, alpha and beta diversity, and OTUs, knowledge of the microbial community structure can be used to predict, monitor, or optimise AD performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.06.007DOI Listing

Publication Analysis

Top Keywords

methane content
12
biogas production
8
microbial communities
8
understanding microbial
4
microbial ecology
4
ecology help
4
help improve
4
improve biogas
4
production 454-pyrosequencing
4
454-pyrosequencing lipid
4

Similar Publications

In-situ stress plays a pivotal role in influencing the desorption, adsorption, and transportation of coalbed methane. The reservoir gas content represents a pivotal physical parameter, encapsulating both the coalbed methane enrichment capacity and the underlying enrichment law of the reservoir. This investigation collates, computes, and consolidates data concerning pore pressure, breakdown pressure, closure pressure, triaxial principal stress, gas content, lateral pressure coefficient, and other pertinent variables from coal reservoirs within several coal-bearing synclines in the Liupanshui coalfield, China.

View Article and Find Full Text PDF

Coalbed methane (CBM) reservoir modification based on chemical solvent treatment could change the coal microstructure, which further affects the adsorption capacity and flow characteristics of this clean energy. Coal samples were extracted by tetrahydrofuran (THF), carbon disulfide (CS), and hydrochloric acid (HCl). Low-pressure nitrogen adsorption, carbon dioxide adsorption, Fourier transform infrared spectroscopy, and methane isothermal adsorption test were adopted.

View Article and Find Full Text PDF

Natural pigments and biogas recovery from cyanobacteria grown in treated wastewater. Fate of organic microcontaminants.

Water Res

December 2024

GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, Barcelona 08034, Spain. Electronic address:

Cyanobacterial wastewater-based biorefineries are a sustainable alternative to obtain high-value products with reduced costs. This study aimed to obtain phycobiliproteins and carotenoids, along with biogas from a wastewater-borne cyanobacterium grown in secondary effluent from an urban wastewater treatment plant, namely treated wastewater. For the first time, the presence of contaminants of emerging concern in concentrated pigment extracts was assessed.

View Article and Find Full Text PDF

In order to promote low-carbon sustainable development in the ecological environment and improve the efficiency of hydrogen and natural gas energy utilization, this project carried out research on the explosive effects of different thicknesses of ordered porous media on the hydrogen-methane gas mixture. A detailed discussion was conducted based on the critical quenching hydrogen blending ratio under the thicknesses of 50 mm and 60 mm of ordered porous media. The results indicate that the critical quenching hydrogen blending ratio is 9% for a thickness of 50 mm and 20% for a thickness of 60 mm, indicating that greater thickness enhances flame suppression capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!