iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency.

J Proteomics

Key Laboratory of Hangzhou City for Quality and Safety of Agricultural Products, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China. Electronic address:

Published: July 2018

Phosphate (Pi) deficiency significantly limits plant growth in natural and agricultural systems. Accumulation of anthocyanins in shoots is a common response of Arabidopsis thaliana to Pi deficiency. To elucidate the mechanisms underlying Pi deficiency-induced anthocyanin accumulation, we employed a proteomic approach based on isobaric tags for relative and absolute quantification (iTRAQ) to investigate protein expression profiles of Arabidopsis thaliana seedlings subjected to Pi deficiency for 7 days. In total, 5,106 proteins were identified, of which 156 displayed significant changes in abundance upon Pi deficiency. Bioinformatics analysis indicated that flavonoid biosynthesis was the most significantly elevated metabolic process under Pi deficiency. We further examined the potential role of the flavonoid biosynthetic pathway using a dihydroflavonol 4-reductase (DFR) mutant (tt3) and quantitative RT-PCR (qRT-PCR) analysis, and found that the tt3 mutant was deprived of transcriptional up-regulation of three genes related to anthocyanin biosynthesis, modification and transport under Pi deficiency. These results showed that Pi deficiency probably enhances the anthocyanin accumulation by promoting the flavonoid biosynthesis. The exact functions of these proteins remain to be examined. Nevertheless, our study increases the understanding of the mechanisms implicated in the anthocyanin accumulation induced by Pi deficiency and adaptive responses of plants to Pi starvation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2018.06.006DOI Listing

Publication Analysis

Top Keywords

anthocyanin accumulation
16
deficiency
9
phosphate deficiency
8
arabidopsis thaliana
8
flavonoid biosynthesis
8
anthocyanin
5
accumulation
5
itraq-based analysis
4
analysis arabidopsis
4
arabidopsis proteome
4

Similar Publications

Background: Fruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches.

View Article and Find Full Text PDF

Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.

View Article and Find Full Text PDF

Phenolic compounds are known for their health-promoting effects on humans. Pak choi (Brassica rapa ssp. chinensis) and Swiss chard (Beta vulgaris subsp.

View Article and Find Full Text PDF

Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp.

Plant Physiol Biochem

December 2024

Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China.

Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp.

View Article and Find Full Text PDF

: is a perennial herb of the Verbenaceae family, known for its medicinal properties, wide adaptability, and high resistance. : This research investigated the metabolic pathways of flower color change by combining transcriptome and metabolomics analyses. : In purple flowers and white variants, a total of 118 differentially accumulated metabolites (DAMs), including 20 anthocyanins, and 7627 differentially expressed genes (DEGs) were found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!