Background: A mobile laboratory transportable on commercial flights was developed to enable local response to viral hemorrhagic fever outbreaks.
Methods: The development progressed from use of mobile real-time reverse-transcription polymerase chain reaction to mobile real-time recombinase polymerase amplification. In this study, we describe various stages of the mobile laboratory development.
Results: A brief overview of mobile laboratory deployments, which culminated in the first on-site detection of Ebola virus disease (EVD) in March 2014, and their successful use in a campaign to roll back EVD cases in Conakry in the West Africa Ebola virus outbreak are described.
Conclusions: The developed mobile laboratory successfully enabled local teams to perform rapid disgnostic testing for viral hemorrhagic fever.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173574 | PMC |
http://dx.doi.org/10.1093/infdis/jiy362 | DOI Listing |
Bioelectromagnetics
January 2025
Bioelectromagnetics Laboratory, University of Wollongong, Wollongong, Australia.
In this paper, we present the design, RF-EMF performance, and a comprehensive uncertainty analysis of the reverberation chamber (RC) exposure systems that have been developed for the use of researchers at the University of Wollongong Bioelectromagnetics Laboratory, Australia, for the purpose of investigating the biological effects of RF-EMF in rodents. Initial studies, at 1950 MHz, have focused on investigating thermophysiological effects of RF exposure, and replication studies related to RF-EMF exposure and progression of Alzheimer's disease (AD) in mice predisposed to AD. The RC exposure system was chosen as it allows relatively unconstrained movement of animals during exposures which can have the beneficial effect of minimizing stress-related, non-RF-induced biological and behavioral changes in the animals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, No. 169 Sheng Tai West Road, Jiangning District, Nanjing, Jiangsu, China, 211106, Nanjing, CHINA.
The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides.
View Article and Find Full Text PDFEJIFCC
December 2024
National Reference Laboratory, Abu Dhabi, UAE.
Background: An increasing number of wearable medical devices are being used for personal monitoring and professional health care purposes. These mobile health devices collect a variety of biometric and health data but do not routinely connect to a patient's electronic health record (EHR) or electronic medical record (EMR) for access by a patient's health care team.
Methods: The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Committee on Mobile Health and Bioengineering in Laboratory Medicine (C-MHBLM) developed consensus recommendations for consideration when interfacing mobile health devices to an EHR/EMR.
Food Chem
January 2025
State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China. Electronic address:
Lateral flow assays (LFAs) have found extensive applications in food safety and quality monitoring. Now, smartphone technology is redefining how tests are conducted at the point of use. At the same time, quick response (QR) codes enhance digital connectivity for information transmission, data collection, and response linkage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!