Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson's disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121185 | PMC |
http://dx.doi.org/10.1093/hmg/ddy232 | DOI Listing |
Genes (Basel)
November 2024
Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece.
As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS).
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase 2 ( ) are the most common cause of familial and sporadic Parkinson's disease (PD). While the clinical features of -PD patients resemble those of typical PD, there are significant differences in the pathological findings. The pathological hallmark of definite PD is the presence of α-synuclein (αSYN)-positive Lewy-related pathology; however, approximately half of -PD cases do not have Lewy-related pathology.
View Article and Find Full Text PDFNeurol Sci
January 2025
School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India.
NPJ Parkinsons Dis
January 2025
Movement Disorders Unit, Neurological Institute, Tel Aviv Medical Center, Tel Aviv, Israel.
Alpha-synuclein (αS) aggregation is a widely regarded hallmark of Parkinson's disease (PD) and can be detected through synuclein amplification assays (SAA). This study investigated the association between cerebrospinal fluid (CSF) radiological measures in 41 PD patients (14 iPD, 14 GBA1-PD, 13 LRRK2-PD) and 14 age-and-sex-matched healthy controls. Quantitative measures including striatal binding ratios (SBR), whole-brain and deep gray matter volumes, neuromelanin-MRI (NM-MRI), functional connectivity (FC), and white matter (WM) diffusion-tensor imaging (DTI) were calculated.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi of Guangxi Higher Education Institutions, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
Leucine-rich repeat kinase 2 (LRRK2) is a ROCO family member which its mutation is closely related with Parkinson's disease, and LRRK2 is widely involved into the regulation of autophagy, vesicle transport and neuronal proliferation. However, the roles of LRRK2 during mammalian oocyte maturation are still largely unclear. In present study, we disturbed the activity of LRRK2 and showed its essential roles in porcine oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!