A bacterial strain, designated 17Sr1-1, was isolated from gamma ray-irradiated soil. Cells of this strain were Gram-stain-negative, strictly aerobic, motile and non-spore-forming rods. Growth occurred at 18-42 ˚C and pH 6.0-8.0, but no growth occurred at 2 % NaCl concentration. The major fatty acids of strain 17Sr1-1 were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), iso-C17 : 1ω5c and C16 : 0. The polar lipid profile contained diphosphatidylglycerol, glycolipid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and four unidentified lipids. The G+C content of the genomic DNA of 17Sr1-1 was 71.9 mol%. The 16S rRNA gene sequence analysis showed that strain 17Sr1-1 was phylogenetically related to Roseomonas pecuniae N75 and Roseomonas rosea 173-96 (96.6 and 96.3 % sequence similarity, respectively). The genotypic and phenotypic data showed that strain 17Sr1-1 could be distinguished from its phylogenetically related species, and that this strain represented a novel species within the genus Roseomonas, for which the name Roseomonas radiodurans sp. nov. (type strain 17Sr1-1=KCTC 52899=NBRC 112872) is proposed as the first reported gamma ray-resistant Roseomonas species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/ijsem.0.002852 | DOI Listing |
ACS Nano
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.
Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States.
The exterior surface of the human pathogen is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, -acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.
Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!