This work investigates the applicability of using data from personal monitoring dosimeters to assess photon energies to which medical workers were exposed. Such determinations would be important for retrospective assessments of organ doses to be used in occupational radiation epidemiology studies, particularly in the absence of work history or other information regarding the energy of the radiation source. Monthly personal dose equivalents and filter ratios under two different metallic filters contained in the Luxel+ dosimeter were collected from Landauer, Inc. from 19 nuclear medicine (NM) technologists employed by three medical institutions, the institution A only performing traditional NM imaging (primarily using Tc) and institutions B and C also performing positron emission tomography (PET, using F). Calibration data of the Luxel+ dosimeter for various xray spectra were used to establish ranges of filter ratios from 1.1 to 1.6 for Tc and below 1.1 for F. Median filter ratios were 1.33 (Interquartile range (IQR), 0.15) for institution A, 1.08 (IQR, 0.16) for institution B, and 1.08 (IQR, 0.14) for institution C. The distributions of these filter ratios were statistically-significantly different between the institution A only performing traditional NM imaging and institutions B and C also performing PET imaging. In this proof-of-concept study, filter ratios from personal monitoring dosimeters were used to assess differences in photon energies to which NM technologists were exposed. Dosimeters from technologists only performing traditional NM procedures mostly showed Al/Cu filter ratios above 1.2, those likely performing only PET in a particular month had filter ratios below 1.1, and those which showed filter ratios between 1.1 and 1.2 likely came from technologists rotating between traditional NM and PET imaging in the same month. These results suggest that it is possible to distinguish technologists who only worked with higher-energy procedures versus those who only worked with other types of NM procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169304 | PMC |
http://dx.doi.org/10.1088/1361-6498/aacd64 | DOI Listing |
Environ Res
January 2025
Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental and Sustainable Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. Electronic address:
Microplastics (MPs) pose significant risks to aquatic life and human health. Conventional water treatment is ineffective in removing MPs, demanding alternative technologies. Biochar exhibits a potential for removing MPs through adsorption and filtration.
View Article and Find Full Text PDFAuris Nasus Larynx
January 2025
Department of Otolaryngology, Kameda Medical Hospital, Chiba, Japan.
Objective: The parathyroid gland emits autofluorescence with a peak at 822 nm when excited using near-infrared light at 785 nm; this observation of autofluorescence using a near-infrared detection device is useful for identifying the parathyroid gland during surgery. We aimed to clarify the localization of autofluorescent substances in parathyroid and thyroid tissues by observing them under a fluorescence microscope through filters that selectively pass specific near-infrared wavelengths.
Methods: Four cases of parathyroid and three cases of thyroid were examined under a fluorescence microscope.
Ann Intensive Care
January 2025
Department of Intensive Care Medicine, Universitaire Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
Background: Continuous veno-venous hemodiafiltration (CVVHDF) is used in critically ill patients, but its impact on O₂ and CO₂ removal, as well as the accuracy of resting energy expenditure (REE) measurement using indirect calorimetry (IC) remains unclear. This study aims to evaluate the effects of CVVHDF on O₂ and CO₂ removal and the accuracy of REE measurement using IC in patients undergoing continuous renal replacement therapy.
Design: Prospective, observational, single-center study.
Sensors (Basel)
January 2025
Department of Computer Science, Faculty of Sciences and Humanities Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia.
Impedance-based biosensing has emerged as a critical technology for high-sensitivity biomolecular detection, yet traditional approaches often rely on bulky, costly impedance analyzers, limiting their portability and usability in point-of-care applications. Addressing these limitations, this paper proposes an advanced biosensing system integrating a Silicon Nanowire Field-Effect Transistor (SiNW-FET) biosensor with a high-gain amplification circuit and a 1D Convolutional Neural Network (CNN) implemented on FPGA hardware. This attempt combines SiNW-FET biosensing technology with FPGA-implemented deep learning noise reduction, creating a compact system capable of real-time viral detection with minimal computational latency.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, PR China.
Vehicle nitrogen oxides (NO) significantly increase nitrogen dioxide (NO) exposure in traffic-related environments. The NO/NO ratios are crucial for accurate NO modeling and are closely linked to public health concerns. In 2020, we used a mobile platform to follow test trucks (plume-chasing) that were installed with a portable emission measuring system (PEMS) on two restricted driving tracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!