RNA In Situ Hybridization on Planarian Paraffin Sections.

Methods Mol Biol

Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.

Published: February 2019

RNA in situ hybridization techniques are an important tool for the study of gene expression patterns in freshwater planarians. Here I describe a RNA in situ hybridization method on histological paraffin sections of planarian tissue. This protocol allows the visualization of gene expression at cellular or subcellular resolution. Following paraffin-embedding and sectioning of planarians, the resulting sections are hybridized with hapten-labeled RNA probes. Subsequent immunological probe detection is carried out with either chromogenic or fluorescent development. This protocol can be performed alone, or in combination with other immunodetection techniques, and represents a useful alternative to whole-mount protocols more commonly used in the community.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7802-1_13DOI Listing

Publication Analysis

Top Keywords

rna situ
12
situ hybridization
12
paraffin sections
8
gene expression
8
rna
4
hybridization planarian
4
planarian paraffin
4
sections rna
4
hybridization techniques
4
techniques tool
4

Similar Publications

Necroptosis is a regulated form of cell death implicated in several pathological conditions, including viral infections. In this study, we investigated the expression and correlation of necroptosis markers MLKL, RIP1 and RIP3 in human liver tissue from fatal cases of yellow fever (YF) using immunohistochemistry (IHC). The liver samples were obtained from 21 YF-positive individuals and five flavivirus-negative controls with preserved liver parenchymal architecture.

View Article and Find Full Text PDF

Recurrent fusions drive the pathogenesis of many hematological malignancies. Compared to routine cytogenetic/fluorescence in situ hybridization (FISH) studies, the RNA-based next-generation sequencing (NGS) fusion assay enables the identification of both known and novel fusions. In many cases, these recurrent fusions are crucial for diagnosis and are associated with prognosis, relapse prediction, and therapeutic options.

View Article and Find Full Text PDF

Knockout of Causes Inner Ear Developmental Defects in Zebrafish.

Biomedicines

December 2024

Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.

: Alternative splicing is essential for the physiological and pathological development of the inner ear. Disruptions in this process can result in both syndromic and non-syndromic forms of hearing loss. DHX38, a DEAH box RNA helicase, is integral to pre-mRNA splicing regulation and plays critical roles in development, cell differentiation, and stem cell maintenance.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) progression is one of the commonest cause of female cancer death. While treatments in clinic includes primary surgery and targeted chemotherapy, curative and survival trends in OC have not significantly improved. Thus, further investigation of the mechanisms regarding OC carcinogenesis and discovery of novel targets is of great importance.

View Article and Find Full Text PDF

Combining transparent embedding with sectioning is likely to be the future direction for tissue clearing and 3-dimensional (3D) imaging. A newly published transparent embedding system, TESOS (Transparent Embedding Solvent System), ensures consistent submicron resolution imaging throughout the entire sample, and can be compatible with different microscopy systems. This method shows great potential in connectome mapping, and might be an optimal option for future 3D multiplex immunofluorescence and RNA in situ hybridization imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!