The human DNA repair enzyme MUTYH excises mispaired adenine residues in oxidized DNA. Homozygous MUTYH mutations underlie the autosomal, recessive cancer syndrome MUTYH-associated polyposis. We report a MUTYH variant, p.C306W (c.918C>G), with a tryptophan residue in place of native cysteine, that ligates the [4Fe4S] cluster in a patient with colonic polyposis and family history of early age colon cancer. In bacterial MutY, the [4Fe4S] cluster is redox active, allowing rapid localization to target lesions by long-range, DNA-mediated signalling. In the current study, using DNA electrochemistry, we determine that wild-type MUTYH is similarly redox-active, but MUTYH C306W undergoes rapid oxidative degradation of its cluster to [3Fe4S], with loss of redox signalling. In MUTYH C306W, oxidative cluster degradation leads to decreased DNA binding and enzyme function. This study confirms redox activity in eukaryotic DNA repair proteins and establishes MUTYH C306W as a pathogenic variant, highlighting the essential role of redox signalling by the [4Fe4S] cluster.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060025PMC
http://dx.doi.org/10.1038/s41557-018-0068-xDOI Listing

Publication Analysis

Top Keywords

[4fe4s] cluster
16
mutyh c306w
12
mutyh variant
8
colonic polyposis
8
dna repair
8
redox signalling
8
mutyh
7
cluster
6
redox
5
dna
5

Similar Publications

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

The [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.

View Article and Find Full Text PDF

Anaerobic plasmalogen production in recombinant Escherichia coli carrying plasmalogen synthase gene from Selenomonas ruminantium.

Biosci Biotechnol Biochem

December 2024

Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.

Escherichia coli expressing SrPlsAR from Selenomonas ruminantium produces plasmalogen, comprising almost 60% of the total phospholipid content under anaerobic conditions. Both plasmenylethanolamine and plasmenylglycerol were detected, and the major acyl aldehyde derived from sn-1 vinyl ether was C16:1. Plasmalogen synthesis is affected by mutations in ATP-binding sites and Cys expected to be involved in the formation of the [4Fe-4S] cluster.

View Article and Find Full Text PDF

The nitrogenase mechanism: new roles for the dangler?

J Biol Inorg Chem

December 2024

Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, 147-75, Pasadena, CA, 91125, USA.

Dangler sites protruding from a core metallocluster were introduced into the bioinorganic lexicon in 2000 by R.D. Britt and co-workers in an analysis of the tetramanganese oxygen-evolving cluster in photosystem II.

View Article and Find Full Text PDF

Two aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!