The microenvironment of peripheral nerve regeneration consists of multiple neurotrophic factors, adhesion molecules, and extracellular matrix molecules, secreted by unique glial cells in the peripheral nerve system (PNS)-Schwann cell (SCs). Following peripheral nerve injury (PNI), local IGF-1 production is upregulated in SCs and denervated muscle during axonal sprouting and regeneration. Regulation of IGF-1/IGF-1R signaling is considered as a potentially targeted therapy of PNI. We previously identified a group of novel miRNAs in proximal nerve following rat sciatic nerve transection. The present work focused on the role of miR-129 in regulation of IGF-1 signaling after sciatic nerve injury. The temporal change profile of the miR-129 expression was negatively correlated with the IGF-1 expression in proximal nerve stump and dorsal root ganglion (DRG) following sciatic nerve transection. An increased expression of miR-129 inhibited proliferation and migration of SCs, and axonal outgrowth of DRG neurons, which was inversely promoted by silencing of the miR-129 expression. The IGF-1 was identified as one of the multiple target genes of miR-129, which exerted negative regulation of IGF-1 by translational suppression. Moreover, knockdown of IGF-1 attenuated the promoting effects of miR-129 inhibitor on proliferation and migration of SCs, and neurite outgrowth of DRG neurons. Overall, our data indicated that miR-129 own the potential to regulate the proliferation and migration of SCs by targeting IGF-1, providing further insight into the regulatory role of miRNAs in peripheral nerve regeneration. The present work not only provides new insight into miR-129 regulation of peripheral nerve regeneration by robust phenotypic modulation of neural cells, but also opens a novel therapeutic window for PNI by mediating IGF-1 production. Our results may provide further experimental basis for translation of the molecular therapy into the clinic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006361 | PMC |
http://dx.doi.org/10.1038/s41419-018-0760-1 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).
Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).
J Tradit Complement Med
January 2025
Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
The sensation of sng (pronounced/səŋ/, the Romanization form of or soreness in Taiwanese Southern Min) associated with a composite of unique sensations, is a novel phenotype for acupoint stimulation. It is perceived by test participants but also by experienced practitioners as a sensation of "taking the bait" (by fish when fishing), a characteristic heavy and tight sensation from the needle. Here, we propose that sng is a powerful biomarker for associated with successful manual acupuncture.
View Article and Find Full Text PDFExp Neurobiol
December 2024
Department of Anatomy and Cell Biology, Dong-A University, College of Medicine, Busan 49201, Korea.
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND.
View Article and Find Full Text PDFBMJ Open
December 2024
Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Introduction: Obstructive sleep apnoea (OSA) is characterised by blood oxygen desaturations and sleep disruptions manifesting undesirable consequences. Existing treatments including oral appliances, positive airway pressure (PAP) therapy and surgically altering the anatomy of the pharynx have drawbacks including poor long-term adherence or often involving irreversible, invasive procedures. Bilateral hypoglossal nerve stimulation (HNS) is a new treatment for managing OSA, and this study is intended to determine whether an HNS system is a safe and effective treatment option for adults with OSA.
View Article and Find Full Text PDFChin Med
January 2025
Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.
Background: Paclitaxel-induced peripheral neuropathy (PIPN) is prevalent among patients receiving paclitaxel chemotherapy, which results in sensory abnormality as well as neuropathic pain. Conventional medications lack effectiveness on PIPN. Clinical trials identified beneficial effects of acupuncture on PIPN among patients receiving chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!