Radiation exposure severely damages the hematopoietic system. Although several radio-protectors have been proposed to prevent radiation-induced damage, most agents have limited efficacy. In the present study, we investigated whether mesenchymal stem cells (MSCs) could contribute to the expansion of hematopoietic cells and mitigate radiation-induced hematopoietic injury in vitro and in vivo. We found that co-culture with MSCs promoted hematopoietic progenitor/stem cell (HPSCs) maintenance by providing a bone marrow-like microenvironment. In addition, we showed that MSCs prevented radiation-induced damage to HPSCs, as evidenced by the lack of DNA damage and apoptosis. Intravenously injected MSCs rapidly migrated to the bone marrow (BM) and prevented loss of BM cellularity, which reduced lethality and ameliorated pancytopenia in the BM of whole body-irradiated mice. We demonstrated that MSC-derived Jagged1 attenuated radiation-induced cytotoxicity of HPSCs, and that this was mediated by Notch signaling and expression of downstream proteins Bcl2 and p63 in HPSCs. In addition, Notch2 depletion significantly reduced the MSC-mediated radio-protective effect in human- and mouse-derived HPSCs. Collectively, our data show that activation of Notch and its associated downstream signaling pathways prevent radiation-induced hematopoietic injury. Therefore, enhancing Jagged1-Notch2 signaling could provide therapeutic benefit by protecting the hematopoietic system against damage after radiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6006282PMC
http://dx.doi.org/10.1038/s41598-018-27666-wDOI Listing

Publication Analysis

Top Keywords

hematopoietic system
12
mesenchymal stem
8
prevent radiation-induced
8
radiation-induced damage
8
radiation-induced hematopoietic
8
hematopoietic injury
8
hematopoietic
7
radiation-induced
6
hpscs
5
stem cell-mediated
4

Similar Publications

: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Fucosidosis: A Review of a Rare Disease.

Int J Mol Sci

January 2025

Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.

Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.

View Article and Find Full Text PDF

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

Dual-double stem cell therapy, which integrates mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), represents a cutting-edge approach in regenerative medicine, particularly for conditions such as ovarian decline, premature ovarian insufficiency (POI), and induced ovarian failure. This therapy leverages the unique properties of MSCs and HSCs, enhancing tissue repair, immune modulation, and overall regenerative outcomes. MSCs, known for their ability to differentiate into various cell types, provide a supportive microenvironment and secrete bioactive molecules that promote angiogenesis and reduce inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!